A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biodegradation and product identification of [14C]hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. | LitMetric

Biodegradation and product identification of [14C]hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment.

Environ Sci Technol

Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, Michigan 48674, USA.

Published: September 2006

In a previous study the biodegradation of hexabromocyclododecane (HBCD) was reported to occur under realistic environmental concentrations in soils and freshwater aquatic sediments with biotransformation half-lives ranging from approximately 2 days to 2 months. In this study we extend our knowledge as to the environmental behavior of HBCD with respect to the fate of the three major diastereomers of HBCD (alpha, beta, and gamma) as well as to the identification of major intermediate metabolites formed during degradation. Substantial biological transformation of the alpha-, beta-, and gamma-[14C]HBCD diastereomers was observed in wastewater (i.e., digester) sludge and in freshwater aquatic sediment microcosms prepared under aerobic and anaerobic conditions. Concomitant with the loss of [14C]HBCD in these matrixes there was a concurrent production of three [14C]products. Using a combination of high performance liquid chromatography atmospheric pressure photoionization mass spectrometry and gas chromatography electron impact ionization mass spectrometry these metabolites were identified as tetrabromocyclododecene, dibromocyclododecadiene, and cyclododecatriene. We propose that HBCD is sequentially debrominated via dihaloelimination where at each step there is the loss of two bromines from vicinal carbons with the subsequent formation of a double bond between the adjacent carbon atoms. These results demonstrate that microorganisms naturally occurring in aquatic sediments and anaerobic digester sludge mediate complete debromination of HBCD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es060009mDOI Listing

Publication Analysis

Top Keywords

freshwater aquatic
12
sludge freshwater
8
aquatic sediment
8
aquatic sediments
8
digester sludge
8
mass spectrometry
8
hbcd
5
biodegradation product
4
product identification
4
identification [14c]hexabromocyclododecane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!