AI Article Synopsis

  • The neuropeptide galanin interacts with Gal(1) receptors in spinal cord neurons, affecting pain processing in the dorsal horn.
  • Using techniques like immunohistochemistry, researchers found that Gal(1) receptors colocalize with VGLUT2, indicating a relationship with excitatory glutamatergic neurons, while not showing colocalization with inhibitory markers.
  • The study suggests that activating Gal(1) receptors on these excitatory neurons may reduce inhibitory signals in the dorsal horn, potentially leading to pain relief (antinociception).

Article Abstract

The 29/30 amino acid neuropeptide galanin has been implicated in pain processing at the spinal level and local dorsal horn neurons expressing the Gal(1) receptor may play a critical role. In order to determine the transmitter identity of these neurons, we used immunohistochemistry and antibodies against the Gal(1) receptor and the three vesicular glutamate transporters (VGLUTs), as well as in situ hybridization, to explore a possible glutamatergic phenotype. Gal(1) protein, which could not be demonstrated in Gal(1) knockout mice, colocalized with VGLUT2 protein, but not with glutamate decarboxylase, in many nerve endings in lamina II. Moreover, Gal(1) and VGLUT2 transcripts were often found in the same cell bodies in laminae I-IV. Gal(1)-protein and galanin-peptide showed an overlapping distribution but were not colocalized. Gal(1) staining did not appear to be affected by dorsal rhizotomy. Taken together, these findings provide strong evidence that Gal(1) is a heteroreceptor expressed on excitatory glutamatergic dorsal horn interneurons. Activation of such Gal(1) receptors may thus decrease the inhibitory tone in the superficial dorsal horn, and possibly cause antinociception.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.21109DOI Listing

Publication Analysis

Top Keywords

dorsal horn
16
gal1
8
gal1 receptor
8
dorsal
5
galanin receptor
4
receptor expressed
4
expressed subpopulation
4
subpopulation glutamatergic
4
glutamatergic interneurons
4
interneurons dorsal
4

Similar Publications

Purpose: Intracellular Ca imaging is a valuable tool for studying neuronal activity; however, its application in the spinal cord of mature animals remains underdeveloped. This study aimed to establish an intracellular Ca imaging method in adult rat spinal cord slices without complex genetic modifications and characterize primary afferent-evoked intracellular Ca responses in spinal dorsal horn neurons.

Methods: L5 lumbar spinal cord slices from adult rats were stained with a Ca indicator.

View Article and Find Full Text PDF

AIM2 promotes excitatory glutamate receptor expression by inhibiting STING and contributes to bone cancer pain in male mice.

Sci Rep

December 2024

Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.

Bone cancer pain (BCP) is a common clinical problem in cancer patients. The plasticity of excitatory neurons within the spinal dorsal horn plays a significant role in the development of BCP. This study explored the roles of absent in melanoma 2 (AIM2) and stimulator of interferon gene (STING) in BCP using male C57BL/6J mice.

View Article and Find Full Text PDF

Involvement of the Ipsilateral Tongue, an Intraoral Structure of Referred Pain due to Entrapment of the Greater Occipital Nerve.

Case Rep Neurol Med

December 2024

Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

This study reports a rare case of referred pain in the trigeminal nerve distribution caused by entrapment of the greater occipital nerve (GON). Notably, the pain extended to the ipsilateral tongue, an unusual intraoral involvement. GON entrapment can lead to sensitization in secondary nociceptive neurons within the trigeminocervical complex (TCC), which receives signals from both trigeminal and occipital nerves, causing referred facial pain.

View Article and Find Full Text PDF

Curcumin analog C16 attenuates bone cancer pain induced by MADB 106 breast cancer cells in female rats and inhibits the CREB/NLGN2 signaling axis by targeting CaMKⅠα.

Neuropharmacology

December 2024

The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China. Electronic address:

Bone cancer pain (BCP) is one of the most severe complications faced by patients with cancer; however, current pharmacological options are limited. Curcumin has been demonstrated to possess anti-inflammatory and analgesic properties; however, our preliminary research found that the analgesic efficiency of curcumin is not high in BCP. Consequently, curcumin analogs have emerged as a significant focus of our research.

View Article and Find Full Text PDF

Rats which experienced neonatal bladder inflammation (NBI) have been demonstrated to exhibit latent bladder hypersensitivity with a nociceptive component that becomes unmasked by a second inflammatory insult as an adult. Manifested as augmented reflex and neuronal responses to urinary bladder distension (UBD), these NBI-induced changes are revealed by using inflammation of nearby structures as an adult pretreatment. The effect of inflammation in distant structures is not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!