Improved resistance to controlled deterioration in transgenic seeds.

Plant Physiol

Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, 41080 Seville, Spain.

Published: November 2006

We show that seed-specific overexpression of the sunflower (Helianthus annuus) HaHSFA9 heat stress transcription factor (HSF) in tobacco (Nicotiana tabacum) enhances the accumulation of heat shock proteins (HSPs). Among these proteins were HSP101 and a subset of the small HSPs, including proteins that accumulate only during embryogenesis in the absence of thermal stress. Levels of late embryogenesis abundant proteins or seed oligosaccharides, however, were not affected. In the transgenic seeds, a high basal thermotolerance persisted during the early hours of imbibition. Transgenic seeds also showed significantly improved resistance to controlled deterioration in a stable and transgene-dependent manner. Furthermore, overexpression of HaHSFA9 did not have detrimental effects on plant growth or development, including seed morphology and total seed yield. Our results agree with previous work tentatively associating HSP gene expression with phenotypes important for seed longevity. These findings might have implications for improving seed longevity in economically important crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1630740PMC
http://dx.doi.org/10.1104/pp.106.087817DOI Listing

Publication Analysis

Top Keywords

transgenic seeds
12
improved resistance
8
resistance controlled
8
controlled deterioration
8
seed longevity
8
seed
5
deterioration transgenic
4
seeds seed-specific
4
seed-specific overexpression
4
overexpression sunflower
4

Similar Publications

WD40 proteins PaTTG1 interact with both bHLH and MYB to regulate trichome formation and anthocyanin biosynthesis in Platanus acerifolia.

Plant Sci

January 2025

Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:

Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexes consist of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.

View Article and Find Full Text PDF

Background: Mongolian grasslands, including the Gobi Desert, have been exposed to drought conditions with few rains. In such harsh environments, plants with highly resistant abilities against drought stress survive over long periods. We hypothesized that these plants could harbor novel and valuable genes for enhancing drought stress resistance.

View Article and Find Full Text PDF

Aβ40 Fibril Assembly on Human Cerebral Smooth Muscle Cells Impairs Cell Viability.

Biochemistry

January 2025

George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmacological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Cerebral vascular deposition of the amyloid-β (Aβ) peptide, a condition known as cerebral amyloid angiopathy (CAA), is associated with intracerebral hemorrhaging and contributes to disease progression in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID). Familial mutations at positions 22 and 23 within the Aβ peptide lead to early onset and severe CAA pathology. Here, we evaluate the effects of fibrillar Aβ peptides on the viability of primary-cultured human cerebral smooth muscle (HCSM) cells, which are the major site of amyloid deposition in cerebral blood vessel walls.

View Article and Find Full Text PDF

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Yellow seed coat color (SCC) is linked to higher seed oil content (SOC) and lower seed lignocellulose content (SLC), but no dominant yellow SCC genes were previously known.
  • A dominant yellow SCC gene called N53-2 was identified in a study using a double haploid population from N53-2 and a black seed coat material, revealing thousands of expression quantitative trait loci (eQTLs) and specific trans-eQTL hotspots.
  • Transgenic experiments confirmed that the newly discovered allele produces yellow SCC seeds with significantly higher SOC and lower SLC, offering promising prospects for breeding rapeseed with desirable traits.
View Article and Find Full Text PDF

Overexpression of apple MdNRT1.7 enhances low nitrogen tolerance via the regulation of ROS scavenging.

Int J Biol Macromol

December 2024

Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang 550025, Guizhou Province, China. Electronic address:

Article Synopsis
  • Low nitrogen stress negatively impacts crop yields, and this study focuses on the role of the nitrate transporter MdNRT1.7 in apples (Malus domestica) to understand its function in combating this stress.
  • Researchers used tobacco plants to investigate MdNRT1.7's regulation, identifying a transcription factor (MdJUB1) that inhibits its expression.
  • Results showed that overexpressing MdNRT1.7 improved nitrogen metabolism and stress tolerance in tobacco by increasing beneficial compounds and enzyme activities while decreasing harmful reactive oxygen species.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!