We report on the use of centerline analysis of cardiac-gated magnetic resonance images to measure wall motion abnormalities in mice infected with Trypanosoma cruzi. To our knowledge, this is the first report of segmental wall motion abnormalities in an animal model of Chagas' disease. Chagas' disease patients with severe cardiac involvement exhibit mild hypokinesis in an extensive region of the left ventricle and dyskinesis in the apical region. We observed dyskinetic segments in a similar region of the hearts of infected wild-type mice. Dyskinesis was not observed in infected mice lacking macrophage inflammatory protein-1alpha, a chemokine that may play an important role in the cardiac remodeling that is normally observed in mouse models of Chagas' disease and in human patients. This study aimed to demonstrate the utility of cardiac-gated magnetic resonance imaging and centerline analysis as a straightforward method for monitoring regional left ventricular wall motion in transgenic and/or diseased mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654323PMC
http://dx.doi.org/10.1016/j.mri.2006.04.001DOI Listing

Publication Analysis

Top Keywords

wall motion
16
centerline analysis
12
cardiac-gated magnetic
12
magnetic resonance
12
chagas' disease
12
resonance images
8
motion abnormalities
8
mice
5
dyskinesis chagasic
4
chagasic myocardium
4

Similar Publications

In order to figure out the wall effect on the propulsive property of an auto-propelled foil, the commercial open-source code ANSYS Fluent was employed to numerically evaluate the fluid dynamics of flexible foil under various wall distances. A virtual model of NACA0015 foil undergoing travelling wavy motion was adopted, and the research object included 2D and 3D models. To capture the foil's moving boundary, the dynamic grid technique coupled with the overlapping grid was utilized to realize the foil's positive deformation and passive forward motion.

View Article and Find Full Text PDF

Background: Coronary heart disease the most prevalent form of cardiovascular disease, results from the blockage of blood flow through arteries. The Myocardial Perfusion Scan (MPS) is considered a non-invasive method to assess the heart condition and provides valuable information, such as End Diastolic Volume (EDV), End Systolic Volume (ESV), Ejection Fraction (EF), Lung to Heart Ratio (LHR), and Transient Ischemic Dilatation (TID).

Objective: This study aimed to investigate changes in gated heart scan parameters to diagnose patients, who are candidates for heart surgery.

View Article and Find Full Text PDF

Magnetic Domain Wall Energy Landscape Engineering in a Ferrimagnet.

Nano Lett

December 2024

Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, 300350 Tianjin, China.

Architectures based on a magnetic domain wall (DW) can store and process information at a high speed in a nonvolatile manner with ultra-low power consumption. Recently, transition-metal rare earth metal alloy-based ferrimagnets have attracted a considerable amount of attention for the ultrafast current-driven DW motion. However, the high-speed DW motion is subject to film inhomogeneity and device edge defects, causing challenges in controlling the DW motion and hindering practical application.

View Article and Find Full Text PDF

Objectives: The enormous burden that cardiovascular diseases put on individuals and societies warrants reliable biomarkers of disease risk to optimize disease prevention. We studied longitudinal movement (LMov) in arterial walls using ultrasound of the common carotid artery (CCA). We believe that LMov could be a sensitive biomarker of cardiovascular health and in this study, we evaluate the intra-observer repeatability and inter-observer precision of our method.

View Article and Find Full Text PDF

Background And Objective: Deep vein thrombosis (DVT) of the lower limbs is a critical global vascular disease. Accurately assessing and predicting the efficacy of DVT treatment remains a significant challenge due to a lack of understanding of the mechanisms by which the level of patient-specific embolization and the rate of drug injection affect thrombolytic therapy.

Methods: In this study, we used the computed tomographic venography (CTV) clinical method to obtain patient-specific parameters, and the flow-solid interaction (FSI) method combined with biochemical response modeling of thrombolysis to analyze patient-specific hemodynamic and biomechanical characteristics and to quantitatively assess the effects of three vessel embolism levels (VEL) versus two drug injection rates (DIR) on bifurcated femoral venous thrombolytic therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!