The baculovirus expression vector system (BEVS) is a powerful and versatile system for protein expression, which has many advantages. However, a limitation of any lytic viral expression system, including BEVS, is that death and lysis of infected insect cells terminates protein production. This results in interruption of protein production and higher production costs due to the need to set up new infections, maintain uninfected cells, and produce pure viral stocks. Genetic methods to slow or prevent cell death while maintaining high-level, virus-driven protein production could dramatically increase protein yields. Several approaches have been used to improve the BEVS and increase the synthesis of functional proteins. Successful enhancement of the BEVS was obtained when various gene elements were added to the virus, secretion and posttranslational processing were modified, or protein integrity was improved. A gene family from the insect virus Campoletis sonorensis ichnovirus (CsIV) was discovered that delays lysis of baculovirus-infected cells, thereby significantly enhancing recombinant protein production in the BEVS system. By using the CsIV vankyrin gene family, protein production in the vankyrin-enhanced BEVS (VE-BEVS) was increased by a factor of 4- to 15-fold by either coexpressing the vankyrin protein from a dual BEVS or by providing its activity in trans by expressing the vankyrin protein from a stably transformed cell line. In sum, VE-BEVS is an enhancement of the existing BEVS technology that markedly improves protein expression levels while reducing the cost of labor and materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0065-3527(06)68002-0DOI Listing

Publication Analysis

Top Keywords

protein production
20
protein
11
baculovirus expression
8
expression vector
8
vector system
8
bevs
8
protein expression
8
gene family
8
vankyrin protein
8
production
6

Similar Publications

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

Leishmania mexicana N-Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression.

Mol Microbiol

January 2025

Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.

Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.

View Article and Find Full Text PDF

Enhanced Genome Editing Activity with Novel Chimeric ScCas9 Variants in Rice.

Adv Sci (Weinh)

January 2025

Research Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi, 030006, China.

The Streptococcus canis Cas9 protein (ScCas9) recognizes the NNG protospacer adjacent motif (PAM), offering a wider range of targets than that offered by the commonly used S. pyogenes Cas9 protein (SpCas9). However, both ScCas9 and its evolved Sc++ variant still exhibit low genome editing efficiency in plants, particularly at the less preferred NTG and NCG PAM targets.

View Article and Find Full Text PDF

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.

View Article and Find Full Text PDF

Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment.

Sci Rep

January 2025

Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.

Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!