Background: Murine tracheal transplantation is a model used to study bronchiolitis obliterans syndrome, a major cause of morbidity and mortality after lung transplantation. Unlike murine heterotopic tracheal transplants, orthotopic transplantation does not cause luminal obliteration despite major histocompatibility antigen mismatch. Repopulation of the tracheal allografts with recipient-derived epithelium confers protection against luminal obliteration. The purpose of this study was to determine whether (1) orthotopic tracheal transplantation showed signs of allograft rejection, and (2) airway epithelial cell injury promoted orthotopic tracheal allograft rejection.
Methods: Forty isogeneic (C57BL/6 to C57BL/6) and 40 allogeneic (BALB/c to C57BL/6) orthotopic tracheal transplants were performed. Damage to airway epithelial cells was induced by Sendai viral (SdV) infection and tracheal transplantation into non-reepithelializing matrix metalloproteinase-7 knockout (MMP7-KO) recipient mice. Percent fibrosis and lamina propria to cartilage ratio were calculated with computer assistance on harvested allografts.
Results: Allografts showed significantly more intramural fibrosis compared with isografts at 30, 60, and 180 days after transplant without luminal occlusion. Tracheal allografts infected with SdV showed an increase in fibrosis and lamina propria to cartilage ratio compared with noninfected controls. Allografts retrieved from MMP7-KO recipients also showed a significant increase in fibrosis and lamina propria to cartilage ratio.
Conclusions: Although orthotopic tracheal transplantation does not cause luminal obliteration, it results in increased fibrosis in allografts. Damage to the respiratory epithelium by viral infection or defective reepithelialization after transplant as seen in MMP7-KO recipient mice leads to changes consistent with chronic allograft rejection, suggesting a role for epithelial injury in bronchiolitis obliterans syndrome development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.athoracsur.2006.03.122 | DOI Listing |
Laryngoscope
February 2025
Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.
Objectives: A critical barrier to successful tracheal transplantation is poor vascularization. Despite its importance, little is known about microvascular regeneration in tissue-engineered grafts. We have demonstrated that partially decellularized tracheal grafts (PDTG) support neotissue formation including new submucosal microvasculature (CD31+).
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:
ACS Biomater Sci Eng
October 2024
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
Curr Mol Med
June 2024
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Introduction: The major complication of Obliterative Bronchiolitis (OB) is characterized by epithelial cell loss, fibrosis, and luminal occlusion of the terminal small airways, which limits the long-term survival of the recipient after lung transplantation. However, the underlying mechanisms are still not fully clarified. This research aims to investigate whether iron overload-induced ferroptosis is involved in OB development and provide a new target for OB prevention.
View Article and Find Full Text PDFJ Biomed Mater Res A
July 2024
Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
The current evidence provides support for the involvement of bone marrow mesenchymal stem cells (BMSCs) in the regulation of airway epithelial cells. However, a comprehensive understanding of the underlying biological mechanisms remains elusive. This study aimed to isolate and characterize BMSC-derived exosomes (BMSC-Exos) and epithelial cells (ECs) through primary culture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!