Immuno-electron microscopic and beta-microprobe studies have demonstrated that the internalization of serotonin 5-HT(1A) autoreceptors, after acute treatment with the selective 5-HT(1A) receptor agonist 8-OH-DPAT or with the specific serotonin reuptake inhibitor (SSRI) fluoxetine, is associated with a marked decrease in the in vivo binding of [(18)F]MPPF in the nucleus raphe dorsalis (NRD) of rat. To determine whether this event might be amenable to brain imaging, the present [(18)F]MPPF positron emission tomographic (PET) study was carried out in anesthetized cats given or not a single dose (5 mg/kg, i.v.) or chronically treated with fluoxetine (5 mg/kg, s.c. for 21 days). Compared to control, [(18)F]MPPF binding potential was considerably (and visibly) decreased in the cat NRD after acute fluoxetine treatment, while it remained unchanged in other brain regions. Unexpectedly, after chronic fluoxetine treatment, [(18)F]MPPF binding potential was not affected in any brain region. In parallel immuno-electron microscopic experiments carried out in rat, the density of 5-HT(1A) autoreceptors on the plasma membrane of NRD dendrites was comparable to control after chronic fluoxetine treatment. If the decrease in [(18)F]MPPF binding at the onset of SSRI treatment was detectable by PET imaging, it could potentially serve as a biological index of efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2006.08.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!