Effects of stent design parameters on normal artery wall mechanics.

J Biomech Eng

Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA.

Published: October 2006

A stent is a device designed to restore flow through constricted arteries. These tubular scaffold devices are delivered to the afflicted region and deployed using minimally invasive techniques. Stents must have sufficient radial strength to prop the diseased artery open. The presence of a stent can subject the artery to abnormally high stresses that can trigger adverse biologic responses culminating in restenosis. The primary aim of this investigation was to investigate the effects of varying stent "design parameters" on the stress field induced in the normal artery wall and the radial displacement achieved by the stent. The generic stent models were designed to represent a sample of the attributes incorporated in present commercially available stents. Each stent was deployed in a homogeneous, nonlinear hyperelastic artery model and evaluated using commercially available finite element analysis software. Of the designs investigated herein, those employing large axial strut spacing, blunted corners, and higher amplitudes in the ring segments induced high circumferential stresses over smaller areas of the artery's inner surface than all other configurations. Axial strut spacing was the dominant parameter in this study, i.e., all designs employing a small stent strut spacing induced higher stresses over larger areas than designs employing the large strut spacing. Increasing either radius of curvature or strut amplitude generally resulted in smaller areas exposed to high stresses. At larger strut spacing, sensitivity to radius of curvature was increased in comparison to the small strut spacing. With the larger strut spacing designs, the effects of varying amplitude could be offset by varying the radius of curvature and vice versa. The range of minimum radial displacements from the unstented diastolic radius observed among all designs was less than 90 microm. Evidence presented herein suggests that stent designs incorporating large axial strut spacing, blunted corners at bends, and higher amplitudes exposed smaller regions of the artery to high stresses, while maintaining a radial displacement that should be sufficient to restore adequate flow.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.2246236DOI Listing

Publication Analysis

Top Keywords

strut spacing
32
high stresses
12
axial strut
12
radius curvature
12
strut
9
normal artery
8
artery wall
8
stent
8
effects varying
8
radial displacement
8

Similar Publications

Silent Brain Infarction (SBI) is increasingly recognized in patients with cardiac conditions, particularly Atrial Fibrillation (AF) in elderly patients and those undergoing Transcatheter Aortic Valve Implantation (TAVI). While these infarcts often go unnoticed due to a lack of acute symptoms, they are associated with a threefold increase in stroke risk and are considered a precursor to ischemic stroke. Moreover, accumulating evidence suggests that SBI may contribute to the development of dementia, depression, and cognitive decline, particularly in the elderly population.

View Article and Find Full Text PDF

In this paper, the shear behavior of concrete beams reinforced with FRP stirrups is studied. The shear performances of six concrete beams with a size of 150 mm × 300 mm × 3000 mm under four-point loading up to failure were experimentally analyzed. The critical parameters included the shear span to depth ratio () and stirrup spacing (S).

View Article and Find Full Text PDF

Miniaturized aqueous zinc ion batteries are attractive energy storage devices for wearable electronics, owing to their safety and low cost. Layered vanadium disulfide (VS) has demonstrated competitive charge storage capability for aqueous zinc ion batteries, as a result of its multivalent states and large interlayer spacing. However, VS electrodes are affected by quick oxide conversion, and they present predefined geometries and aspect ratios, which hinders their integration in wearables devices.

View Article and Find Full Text PDF

Stroke is the second leading cause of death worldwide. Nearly two-thirds of strokes are produced by cardioembolisms, and half of cardioembolic strokes are triggered by Atrial Fibrillation (AF), the most common type of arrhythmia. A more recent cause of cardioembolisms is Transcatheter Aortic Valve Replacements (TAVRs), which may onset post-procedural adverse events such as stroke and Silent Brain Infarcts (SBIs), for which no definitive treatment exists, and which will only get worse as TAVRs are implanted in younger and lower risk patients.

View Article and Find Full Text PDF

Nanoscale patterning of collagens in C. elegans apical extracellular matrix.

Nat Commun

November 2023

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.

Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!