A sample of 204 skinks (Squamata: Scincidae) from 10 genera representing 24 species were collected from 10 different localities in New Guinea and examined for blood parasites. Hemogregarines, trypanosomes, microfilarial worms, and 8 infections showing 2 distinct morphological types of malaria parasites (Plasmodium sp.) were observed. Molecular sequence data, in the form of mitochondrial cytochrome b sequences from the Plasmodium infections, showed 2 distinct clades of parasites, 1 in Sphenomorphus jobiense hosts and 1 in Emoia spp., which correspond to the 2 morphotypes. There was substantial genetic variation between the 2 clades, as well as within the clade of Emoia parasites. Nearly half of the skinks sampled had green blood pigmentation, resulting from the presence of biliverdin in the plasma; however, only 1 of these lizards was infected with Plasmodium sp. and only 2 had any blood parasites. These preliminary results suggest a high degree of phylogenetic diversity but a very low prevalence of Plasmodium spp. infections in the skinks of this globally important biodiversity hot spot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1645/GE-693R.1 | DOI Listing |
Acta Parasitol
January 2025
Department of Biomedicine and Biotechnology, Faculty of Medicine, University of Alcala, Alcala de Henares, Spain.
Purpose: Malaria remains a major global health challenge, particularly in sub-Saharan Africa and low- and middle-income countries (LMICs), contributing substantially to mortality and morbidity rates. In resource-limited settings, access to specialized diagnostic tests is often restricted, making basic blood analysis a valuable diagnostic tool. This study investigated the correlation between malaria infection and full blood count values in a rural region of Ghana during the 2022 rainy season, aiming to highlight diagnostic insights available from routine blood analyses.
View Article and Find Full Text PDFmSphere
January 2025
Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.
Visceral leishmaniasis (VL) is a vector-borne disease caused by the obligate intracellular protozoan in India. VL can be complicated by post-kala-azar dermal leishmaniasis (PKDL), a macular or nodular rash that develops in 10%-20% of patients after treatment of VL in India. Patients with PKDL are infectious to sand flies, promoting further transmission of the parasite.
View Article and Find Full Text PDFBackground: Babesiosis poses significant risks of adverse outcomes in individuals with immunocompromising conditions (IC) and asplenia/hyposplenia (AH). This study compares clinical outcomes between these vulnerable groups and immunocompetent patients.
Methods: A multicenter retrospective cohort study included adult patients with laboratory-confirmed babesiosis from 2009 to 2023.
Res Rep Trop Med
January 2025
Parasitology Laboratory, Pasteur Institute of Bangui, Bangui, Central Africa Republic.
Background: Malaria is a major public health problem in the Central African Republic (CAR). Data on malaria epidemiology are often derived from confirmed cases of symptomatic malaria using passive detection approaches, with very limited knowledge of the extent of subclinical and submicroscopic infections.
Methods: A community-based cross-sectional study was conducted in Bangui, the capital of the CAR, to assess the prevalence of subclinical malaria parasitaemia.
PLoS Negl Trop Dis
January 2025
Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America.
Reactivation of Trypanosoma cruzi transmission by native vectors with different domiciliation capabilities is a major concern for Chagas disease control programs. T. cruzi transmission via intra-domestic Rhodnius prolixus was certified as interrupted by the Pan American Health Organization in Miraflores municipality (Boyacá, Colombia) in 2019.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!