In eukaryotic translation initiation, the eIF2.GTP/Met-tRNA(i)(Met) ternary complex (TC) binds the eIF3/eIF1/eIF5 complex to form the multifactor complex (MFC), whereas eIF2.GDP binds the pentameric factor eIF2B for guanine nucleotide exchange. eIF5 and the eIF2Bvarepsilon catalytic subunit possess a conserved eIF2-binding site. Nearly half of cellular eIF2 forms a complex with eIF5 lacking Met-tRNA(i)(Met), and here we investigate its physiological significance. eIF5 overexpression increases the abundance of both eIF2/eIF5 and TC/eIF5 complexes, thereby impeding eIF2B reaction and MFC formation, respectively. eIF2Bvarepsilon mutations, but not other eIF2B mutations, enhance the ability of overexpressed eIF5 to compete for eIF2, indicating that interaction of eIF2Bvarepsilon with eIF2 normally disrupts eIF2/eIF5 interaction. Overexpression of the catalytic eIF2Bvarepsilon segment similarly exacerbates eIF5 mutant phenotypes, supporting the ability of eIF2Bvarepsilon to compete with MFC. Moreover, we show that eIF5 overexpression does not generate aberrant MFC lacking tRNA(i)(Met), suggesting that tRNA(i)(Met) is a vital component promoting MFC assembly. We propose that the eIF2/eIF5 complex represents a cytoplasmic reservoir for eIF2 that antagonizes eIF2B-promoted guanine nucleotide exchange, enabling coordinated regulation of translation initiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1589998PMC
http://dx.doi.org/10.1038/sj.emboj.7601339DOI Listing

Publication Analysis

Top Keywords

guanine nucleotide
12
nucleotide exchange
12
translation initiation
12
eif5 overexpression
8
eif5
6
complex
5
mfc
5
eif2bvarepsilon
5
eif5/eif2 complex
4
complex antagonizes
4

Similar Publications

Summary: Short stature is a common complaint among pediatric visits and the differential diagnosis is extensive. Although some variations in growth are normal, deviation from normal growth is often the first symptom of chronic disease in children. This is true for hormone abnormalities including growth hormone deficiency, hypothyroidism and glucocorticoid excess.

View Article and Find Full Text PDF

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Induction of IMPDH-Based Cytoophidia by a Probable IMP-Dependent ARL13B-IMPDH Interaction.

Biochemistry (Mosc)

December 2024

Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.

Inosine Monophosphate Dehydrogenase (IMPDH) catalyzes rate-limiting step of the reaction converting inosine monophosphate (IMP) to guanine nucleotides. IMPDH is up-regulated in the healthy proliferating cells and also in tumor cells to meet their elevated demand for guanine nucleotides. An exclusive regulatory mechanism for this enzyme is filamentation, through which IMPDH can resist allosteric inhibition by the end product, GTP.

View Article and Find Full Text PDF

Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.

View Article and Find Full Text PDF

The transgenic MutaMouse hepatocyte mutation assay in vitro: Mutagenicity and mutation spectra of six substances with different mutagenic mechanisms.

Mutat Res Genet Toxicol Environ Mutagen

January 2025

Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.

Mutagenicity testing is a component of the hazard assessment of industrial chemicals, biocides, and pesticides. Mutations induced by test substances can be detected by in vitro and in vivo methods that have been adopted as OECD Test Guidelines. One of these in vivo methods is the Transgenic Rodent Assay (TGRA), OECD test guideline no.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!