Objective: To compare the mechanical stability of a fixed-angle blade plate with that of a locking plate in a cadaveric proximal humerus fracture-fixation model subjected to cyclic loading. A secondary objective was to evaluate whether the use of synthetic humerus specimens would replicate significant differences found during cadaveric tests.
Design: Mechanical evaluation of constructs in bending and torsion.
Setting: Biomechanical laboratory in an academic medical center.
Methods: Simulated humeral neck fractures (Orthopaedic Trauma Association (OTA) classification 11A3), in matched-pair cadaveric and synthetic specimens underwent fixation using either a 3.5-mm, 90-degree cannulated LC-Angled Blade Plate or a 3.5-mm LCP Proximal Humerus Locking Plate. Cadaveric specimen constructs were cyclically loaded in bending and torsion; synthetic specimens were tested in torsion.
Main Outcome Measure: Humeral shaft-bending displacements and angular rotations for respective cyclic bending loads and axial torques were recorded and compared at repeated cyclic intervals to evaluate construct loosening.
Results: Locking-plate constructs exhibited significantly less loosening than blade-plate constructs for torsional loading in cadaveric specimens (P = 0.036). The two types of constructs performed similarly for torsional loading in synthetic specimens (P = 0.100). Under cyclic, closed-bending load conditions in which the plates served as tension members, both types of constructs performed similarly in cadaveric specimens (P = 0.079).
Conclusions: For simulated humeral neck fractures subjected to cyclic loading, locking-plate constructs demonstrated significantly greater torsional stability and similar bending stability to blade plates in a cadaveric specimen model. In contrast, these same constructs performed similarly with torsional loading when using synthetic humerus specimens. These results indicate potential advantages for locking-plate fixation. They also indicate that the synthetic specimens tested may not be appropriate for evaluating fixation stability in the humeral head, where cancellous bone fixation predominates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.bot.0000244997.52751.58 | DOI Listing |
Nat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic.
This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Process Systems Engineering, University of Stuttgart, Böblinger Str. 78, 70199 Stuttgart, Germany. Electronic address:
Hydrogels are natural/synthetic polymer-based materials with a large percentage of water content, usually above 80 %, and are suitable for many application fields such as wearable sensors, biomedicine, cosmetics, agriculture, etc. However, their performance is susceptible to environmental changes in temperature, relative humidity, and mechanical deformation due to their aqueous and soft nature. We investigate the mechanical response of both filled and unfilled alginate/gellan hydrogels using a combined axial-torsional rheometric approach with cylindrical samples of large length/diameter ratio under controlled temperature and relative humidity.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
AO Research Institute Davos, Davos, Switzerland.
Purpose: Optimizing fracture reduction quality is key to achieve successful osteosynthesis, especially for epimetaphyseal regions such as the proximal humerus (PH), but can be challenging, partly due to the lack of a clear endpoint. We aimed to develop the prototype for a novel intraoperative C-arm-based aid to facilitate true anatomical reduction of fractures of the PH.
Methods: The proposed method designates the reduced endpoint position of fragments by superimposing the outer boundary of the premorbid bone shape on intraoperative C-arm images, taking the mirrored intact contralateral PH from the preoperative CT scan as a surrogate.
Sci Rep
January 2025
Department of Prosthodontics, Yonsei University College of Dentistry, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
The effects of heat-assisted vat photopolymerization (HVPP) on the physical and mechanical properties of 3D-printed dental resins, including the morphometric stability of 3D-printed crowns, were investigated. A resin tank was designed to maintain the resin at 30, 40, and 50 ℃ during the 3D printing process. Test specimens were fabricated using a commercial dental resin, with untreated resin serving as the control group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!