The potential combined effect and mechanism of calcium channel blockers (CCB) and angiotensin II type 1 receptor blockers (ARB) to improve insulin resistance were investigated in type 2 diabetic KK-Ay mice, focusing on their antioxidative action. Treatment of KK-Ay mice with a CCB, azelnidipine (3 mg/kg/day), or with an ARB, olmesartan (3 mg/kg/day), for 2 weeks lowered the plasma concentrations of glucose and insulin in the fed state, attenuated the increase in plasma glucose in the oral glucose tolerance test (OGTT), and increased 2-[(3)H]deoxy-d-glucose (2-[(3)H]DG) uptake into skeletal muscle with the increase in translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Both blockers also decreased the in situ superoxide production in skeletal muscle. The decrease in plasma concentrations of glucose and insulin in the fed state and superoxide production in skeletal muscle, as well as GLUT4 translocation to the plasma membrane, after azelnidipine administration was not significantly affected by coadministration of an antioxidant, 2,2,6,6-tetramethyl-1-piperidinyloxy (tempol). However, those changes caused by olmesartan were further improved by tempol. Moreover, olmesartan enhanced the insulin-induced tyrosine phosphorylation of insulin receptor substrate-1 induced in skeletal muscle, whereas azelnidipine did not change it. Coadministration of azelnidipine and olmesartan further decreased the plasma concentrations of glucose and insulin, improved OGTT, and increased 2-[(3)H]DG uptake in skeletal muscle. These results suggest that azelnidipine improved glucose intolerance mainly through inhibition of oxidative stress and enhanced the inhibitory effects of olmesartan on glucose intolerance, as well as the clinical possibility that the combination of CCB and ARB could be more effective than monotherapy in the treatment of insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.108894DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
glucose intolerance
12
plasma concentrations
12
concentrations glucose
12
glucose insulin
12
glucose
9
calcium channel
8
insulin resistance
8
kk-ay mice
8
insulin fed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!