Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines.

J Magn Reson

Leibniz-Institut für molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.

Published: December 2006

Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the alpha-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C-13C lysine-only correlation experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2006.08.015DOI Listing

Publication Analysis

Top Keywords

amino-acid selective
8
uniformly 13c
8
13c 15n
8
15n labeled
8
mas nmr
8
selective excitation
8
selective experiments
4
experiments uniformly
4
labeled proteins
4
proteins mas
4

Similar Publications

Chiral Aldehyde/Palladium Catalysis Enables Asymmetric Branched-Selective Ring-Opening Functionalization of Methylenecyclopropanes with Amino Acid Esters.

J Am Chem Soc

January 2025

Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

Achieving catalytic asymmetric functionalization of methylenecyclopropanes (MCPs) by selective C-C bond cleavage is a notable challenge due to the intricate reaction partners involved. In this work, we report that chiral aldehyde/palladium combined catalysis enables the asymmetric functionalization of MCPs with NH-unprotected amino acid esters. This reaction proceeds through a regiospecific branched ring-opening mechanism, resulting in optically active α,α-disubstituted α-amino acid esters bearing nonconjugated terminal alkene units.

View Article and Find Full Text PDF

Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.

View Article and Find Full Text PDF

Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids.

View Article and Find Full Text PDF

The development of multitargeted drugs is urgent for ischemic stroke. TRPV1 and TRPM8 are important targets of ischemic stroke. Previous drug candidate screening has identified that muscone, l-borneol, and ferulic acid may target TRPV1 and TRPM8 for ischemic stroke.

View Article and Find Full Text PDF

Amino acid-based, sustainable organic nanozyme and integrated sensing platform for histamine detection.

Food Chem

January 2025

The Grainger College of Engineering, College of Agricultural, Consumer and Environmental Sciences, Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

Inorganic nanozymes hold promise for biomolecule sensing but face challenges like complex fabrication, toxicity, and low sustainability, limiting their use. To overcome these, a sustainable organic nanozyme (OA nanozyme) was created using amino acids and a biocompatible polymer for effective histamine detection. The OA nanozyme exhibits peroxidase-like activity and was fabricated through a single chelation/polymer entanglement method, enabling rapid production (within 3 h) with uniform morphology (≤100 nm diameter) and a negative surface charge at neutral pH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!