The design of optimal vaccines requires detailed knowledge of how protective immune responses are generated in vivo under normal circumstances. This approach to vaccine development, where the immune correlates of protection are defined and vaccines are designed to elicit the same response, is called rational vaccine design. Poxviruses are attractive candidates for inclusion in such design strategies owing to their large genome, which allows for the inclusion of multiple heterologous genes, including those encoding antigens, co-stimulatory molecules and cytokines. Fowlpox virus, the prototypical member of the Avipoxvirus genus, is particularly suitable, as it is also incapable of replicating in mammalian cells. The potential of recombinant fowlpox virus as a safe vaccine vector is being evaluated currently in a number of clinical trials for diseases, including HIV, malaria and various types of cancer. Despite their promise, intricate details regarding how fowlpox virus interacts with the host immune system have not been resolved. In this review, the issues surrounding the use of fowlpox virus as a vaccine vector and possible strategies for enhancing its efficacy are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/14760584.5.4.565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!