The influence of auxins on the biosynthesis of isoprene derivatives in callus cultures of Vaccinium corymbosum var. bluecrop.

Z Naturforsch C J Biosci

Department of Pharmacognosy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk-Wrzeszcz, Poland.

Published: November 2006

Callus cultures of Vaccinium corymbosum var. bluecrop were optimized for their isoprene derivatives production by supplementing Schenk-Hildebrandt (SH) medium with constant concentration of kinetin (2.32 microM) and two different amounts of selected auxins. Every auxin, except for IBA, used in 10-time higher concentration (2,4D, NAA, IAA, NOA) stimulated biosynthesis of beta-sitosterol and inhibited triterpene synthesis. Quantitative analysis of isoprene derivatives in callus biomass collected on the 25th day of the experiment proved that the analyzed callus of Vaccinium corymbosum var. bluecrop synthesized the highest amount of isoprene derivatives after subculturing on SH medium modified with 22.6 microM of 2,4D and 2.32 microM of kinetin.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2006-7-816DOI Listing

Publication Analysis

Top Keywords

isoprene derivatives
16
vaccinium corymbosum
12
corymbosum var
12
var bluecrop
12
derivatives callus
8
callus cultures
8
cultures vaccinium
8
232 microm
8
influence auxins
4
auxins biosynthesis
4

Similar Publications

As an essential component of urban natural sources, isoprene has strong interactions and synergies with anthropogenic precursors (volatile organic compounds and nitrogen oxides) of ozone (O), influencing O formation in urban areas. However, the variability of these effects under different anthropogenic emission scenarios has not been fully understood. This study, utilizing observational data from Dezhou (a medium-sized city in the center of North China Plain) from May to September in both 2019 and 2020, and incorporating four future scenarios based on Shared Socioeconomic Pathways (SSP1-2.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for C-H functionalization of heteroaryl compounds is introduced, which involves a process called dearomative addition followed by hydrogen autotransfer.
  • This process starts with the hydroruthenation of dienes to create allylruthenium nucleophiles, leading to branched C-C coupling products through addition and β-hydride elimination.
  • The study also details the formation of enantiomerically enriched heteroarylethyl alcohols and amines through oxidative cleavage and dynamic kinetic asymmetric reduction, supported by density functional theory calculations linking regioselectivities to molecular factors.
View Article and Find Full Text PDF

Arctic haze has attracted considerable scientific interest for decades. However, limited studies have focused on the molecular composition of atmospheric particulate matter that contributes to Arctic haze. Our study collected atmospheric particles at Alert in the Canadian high Arctic from mid-February to early May 2000.

View Article and Find Full Text PDF
Article Synopsis
  • * This study focused on measuring the ice nucleation rate of 2-methyltetrols (2-MT), a component of certain organic aerosols, and found that as the aerosol's viscosity increases, its ice nucleation ability also increases significantly, especially when transitioning from liquid to semisolid states.
  • * A new model based on classical nucleation theory was created to quantify the relationship between viscosity and ice nucleation rate, which can be used in climate models to better represent cir
View Article and Find Full Text PDF

Chemical Composition of Secondary Organic Aerosol Formed from the Oxidation of Semivolatile Isoprene Epoxydiol Isomerization Products.

Environ Sci Technol

December 2024

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

3-Methylenebutane-1,2,4-triol and 3-methyltetrahydrofuran-2,4-diols, previously designated "C-alkene triols", were recently confirmed as in-particle isomerization products of isoprene-derived β-IEPOX isomers that are formed upon acid-driven uptake and partition back into the gas phase. In chamber experiments, we have systematically explored their gas phase oxidation by hydroxyl radical (OH) as a potential source of secondary organic aerosol (SOA). OH-initiated oxidation of both compounds in the presence of ammonium bisulfate aerosol resulted in substantial aerosol volume growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!