Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers.

Arch Environ Contam Toxicol

Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil.

Published: November 2006

Acidic mine waters have a marked influence on the surrounding environment and pose a serious threat through long-term environmental degradation. Therefore, it is important to improve and monitor water quality with the aim of decreasing the hazard presented by this effluent emission. The aim of this work was to evaluate the remediation of mining wastewater effluents by chitosan microspheres using biomarkers of exposure and effect. DNA damage (Comet assay) and several biomarkers of oxidative stress, such as lipoperoxidation levels (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) activities, and contents of reduced glutathione (GSH), were measured in blood and liver of tilapia (Oreochromis niloticus) exposed for 7, 15, and 30 days to dechlorinated tap water, 10% coal mining wastewater (CMW), and coal mining wastewater treated with chitosan microspheres (RCM). The results indicate that hepatic TBARS levels were significantly higher in fish exposed to CMW after 7, 15, and 30 days (100%, 86%, and 63%, respectively), and after remediation there was no significant difference in relation to the control group. Hepatic GSH concentrations were lower than control values for CMW after 7 and 15 days of exposure (34% decrease at both times), and this concentration was normalized by treatment with chitosan. SOD showed increased activity in liver after 15 and 30 days of exposure, 30% and 36%, respectively, and in fish exposed to RCM there was no change in this activity compared with the control group. Increased CAT activity in liver was observed during all experimental periods in fish exposed to CMW (46%, 50%, and 56% at 7, 15, and 30 days, respectively) compared with the control or treated-water groups. The highest increase in hepatic GST activity (106%) was observed only in fish exposed to CMW for 30 days. There was an increase in DNA damage in liver (50% at 7 and 15 days) and blood (79%, 77%, and 48% at 7, 15, and 30 days, respectively) after exposure to CMW. In contrast, the fish exposed to wastewater treated with chitosan microspheres exhibited DNA fragmentation indexes similar to the control group. The results obtained indicate the use of oxidative stress biomarkers as useful tools for the toxicity evaluation of coal mining effluents and also suggest that chitosan microspheres may be used as an alternative approach for remediation of coal mining wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-005-0187-4DOI Listing

Publication Analysis

Top Keywords

coal mining
20
chitosan microspheres
20
fish exposed
20
mining wastewater
16
exposed cmw
12
cmw days
12
control group
12
days exposure
12
remediation coal
8
microspheres biomarkers
8

Similar Publications

The objective of this study was to evaluate the effect of injecting flue gas (CO, N, and O) originating from coal-fired power plants into a coal seam on CH extraction and CO geological storage. To this end, a multifield thermal-fluid-solid-coupled mathematical model of flue gas injection extraction was established. The results showed that with the increase in time increase, the volume concentration of CH decreased, but the CO, N, and O increased.

View Article and Find Full Text PDF

Coal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.

View Article and Find Full Text PDF

Methodological study on coal-based microbial modification of mineral black clay to overcome plant growth challenges on open-pit mine dumps in cold regions.

MethodsX

June 2025

CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China.

A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs.

View Article and Find Full Text PDF

To enhance the safety of coal mining operations and improve the efficiency of gas extraction, hydraulic flushing technology has been widely used in low permeability coal seams. This study aims to investigate the mechanism of hydraulic flushing by conducting experiments focusing on four aspects: sample strength, punching pressure, punching position and vibration direction. The results show that an increase in hydraulic flushing pressure leads to a deeper impact groove, whereas higher sample strength results in a shallower groove.

View Article and Find Full Text PDF

Chemical associations of selenium oxyanions in metal oxides derived from layered double hydroxides: Implication for the immobilization of radionuclides.

Environ Res

January 2025

School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8050, Japan; Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

Layered double hydroxides (LDHs) can effectively stabilize Se oxyanions, yet the thermal stability of Se oxyanions incorporated into LDHs remains unclear. In this study, calcination products of three types of LDHs loaded with SeO2- 3 or SeO2-4 were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray absorption fine structure spectroscopy (XAFS) and leaching tests. It has been found that SeO2-4 can be reduced to SeO2- 3 in the Fe-containing LDHs after calcination at temperatures above 450 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!