It has been proposed that haematopoietic and endothelial cells share a common progenitor, termed the haemangioblast. This idea was initially conceived as a result of the observation that these two cell types develop in close proximity to each other within the embryo. Support for this hypothesis was provided by studies on single-cell-derived colonies that can produce both haematopoietic and endothelial cells in vitro. Although these data point towards the existence of a common progenitor for these two lineages, the presence of a bipotential progenitor cell has yet to be demonstrated in vivo. Through the construction of single-cell-resolution fate maps of the zebrafish late blastula and gastrula, we demonstrate that individual cells can give rise to both haematopoietic and endothelial cells. These bipotential progenitors arise along the entire extent of the ventral mesoderm and contribute solely to haematopoietic and endothelial cells. We also find that only a subset of haematopoietic and endothelial cells arise from haemangioblasts. The endothelial descendants of the haemangioblasts all clustered in a specific region of the axial vessels regardless of the location of their progenitors. Our results provide in vivo evidence supporting the existence of the haemangioblast and reveal distinct features of this cell population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature05045 | DOI Listing |
Development
January 2025
Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
Dendritic cells (DCs) are key cellular components of the immune system and perform critical functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal-spatial resolved fate-mapping system, here we show that in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Medicine, Veterans Affairs Medical Center, Washington, DC, USA.
Introduction: Effects of Dapagliflozin (Dapa) and Dapagliflozin-Saxagliptin combination (Combo) was examined on peripheral blood derived CD34 + Hematopoetic Stem Cells (HSCs) as a cellular CVD biomarker. Both Dapa (a sodium-glucose co-transporter 2 or SGLT2, receptor inhibitor) and Saxagliptin (a Di-peptydl-peptidase-4 or DPP4 enzyme inhibitor) are commonly used type 2 diabetes mellitus or T2DM medications, however the benefit of using the combination has not been evaluated for cardio-renal risk assessment, in a real-life practice setting, compared to a placebo.
Hypothesis: We hypothesized that Dapa will improve the outcomes when compared to placebo and the Combo maybe even more beneficial.
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Upon exposure to inflammatory stimuli including TNF-α, endothelial cells are activated leading to the adhesion of monocytes to their surface. These events are involved in the pathophysiology of atherosclerosis. Since TNF-α activates the NF-κB pathway, which contributes to atherosclerosis, targeting this signaling pathway may help prevent the risk of developing the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!