Future and applications of cloning.

Methods Mol Biol

Monash Immunology and Stem Cell Laboratories, Monash University, Melbourne, Victoria, Australia.

Published: December 2006

The birth of viable offspring from somatic cell nuclear transfer (SCNT) in mammals caused a major re-examination of the understanding of the commitment of cells to specific tissue lineages during differentiation. The questions of whether cells undergo dedifferentiation or transdifferentiation during the development of offspring and how these changes are controlled is a source of ongoing debate that is yet to be resolved. Irrespective of the outcome of this debate, it is clear that cloning using SCNT has a place and purpose in the future of research and animal breeding. The future uses of SCNT could include the production of transgenic mice, the production of transgenic livestock and assisting with the re-establishment of endangered species. Human medicine also would benefit from future use of SCNT because it would allow the production of patient-specific embryonic stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-154-3_22DOI Listing

Publication Analysis

Top Keywords

future scnt
8
production transgenic
8
future
4
future applications
4
applications cloning
4
cloning birth
4
birth viable
4
viable offspring
4
offspring somatic
4
somatic cell
4

Similar Publications

After in vitro maturation (IVM) of porcine germinal vesicle (GV) oocytes, those that matured to the metaphase II (MII) stage were selected for further culture over a period of 24-48 h. Subsequently, these oocytes were either parthenogenetically activated or used for somatic cell nuclear transfer (SCNT) to evaluate their in vitro developmental competence. Parthenogenetically activated MII oocytes developed to the blastocyst stage after 42 h of continuous culture, whereas SCNT oocytes reached the blastocyst stage within 30 h of culture.

View Article and Find Full Text PDF

Future of reproductive biotechnologies in water buffalo in Southeast Asian countries.

Theriogenology

February 2025

Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand. Electronic address:

The future of reproductive biotechnologies in water buffalo in Southeast Asian countries holds significant promise for enhancing genetic quality and productivity. Fixed-time artificial insemination remains the commonly used technology, with advances in assisted reproductive technologies (ART) such as in vitro embryo production (IVEP), embryo transfer (ET), and the use of sex-sorted sperm increasingly adopted to improve breeding efficiency. These technologies overcome traditional breeding limitations, such as low reproductive rates, genetic diversity constraints, and the production of sex-predetermined offspring.

View Article and Find Full Text PDF

Optical tweezer-assisted cell pairing and fusion for somatic cell nuclear transfer within an open microchannel.

Lab Chip

November 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Institute of Robotics and Automatic Information System (IRAIS), Nankai University, Tianjin 300350, China.

Somatic cell nuclear transfer (SCNT), referred to as somatic cell cloning, is a pivotal biotechnological technique utilized across various applications. Although robotic SCNT is currently available, the subsequent oocyte electrical activation/reconstructed embryo electrofusion is still manually completed by skilled operators, presenting challenges in efficient manipulation due to the uncontrollable positioning of the reconstructed embryo. This study introduces a robotic SCNT-electrofusion system to enable high-precision batch SCNT cloning.

View Article and Find Full Text PDF

Reduction of H3K9 methylation by G9a inhibitors improves the development of mouse SCNT embryos.

Stem Cell Reports

June 2024

Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Bioresource Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan. Electronic address:

Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos.

View Article and Find Full Text PDF

High-Performance Airflow Sensors Based on Suspended Ultralong Carbon Nanotube Crossed Networks.

ACS Appl Mater Interfaces

April 2024

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Article Synopsis
  • Airflow sensors are increasingly essential across various industries like aerospace, environmental monitoring, and wearable tech, but traditional sensors struggle with sensitivity and response times.
  • This research introduces high-performance airflow sensors made from suspended ultralong carbon nanotube (CNT) crossed networks, which enhance detection performance due to their unique structure.
  • The study demonstrates that these sensors offer high sensitivity and fast response while being practical for applications like respiratory monitoring, thanks to their ability to encapsulate and their distinct sensing mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!