In vitro reprogramming of nuclei and cells.

Methods Mol Biol

Institute of Medical Biochemistry, University of Oslo, Oslo, Norway.

Published: December 2006

Directly turning a somatic cell type into another would be beneficial for producing replacement cells for therapeutic purposes. To this end, novel cell reprogramming strategies are being developed. We describe here methods for functionally reprogramming a somatic cell using an extract derived from another somatic cell type. The procedure involves reversible permeabilization of 293T fibroblasts, incubation of the permeabilized cells in a nuclear and cytoplasmic extract of T-cells, resealing of the "reprogrammed" cells, and culture for assessment of reprogramming. Reprogramming has been evidenced by nuclear uptake and assembly of transcription factors, induction of activity of a chromatin remodeling complex, changes in chromatin composition, activation of lymphoid cell-specific genes, and expression of T-cell-specific surface molecules. The system is likely to constitute a powerful tool to examine the processes of nuclear reprogramming, at least as they occur in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-154-3_18DOI Listing

Publication Analysis

Top Keywords

somatic cell
12
cell type
8
reprogramming
5
vitro reprogramming
4
reprogramming nuclei
4
cells
4
nuclei cells
4
cells directly
4
directly turning
4
turning somatic
4

Similar Publications

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.

View Article and Find Full Text PDF

Cell integrity limits ploidy in budding yeast.

G3 (Bethesda)

January 2025

Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.

View Article and Find Full Text PDF

Introduction: Giant cell tumor of bone (GCTB) is a rare, typically benign neoplasm that primarily affects long bones in adults, with clival involvement being extremely rare, particularly in pediatric cases: a mini-review shows a total of 28 described cases, of which only 5 were truly pediatric (within 14 years of age). Surgery is the treatment of choice, and Denosumab is reported to be the most effective drug therapy. To date, the GCTB's molecular hallmark is the somatic mutation p.

View Article and Find Full Text PDF

Background: We previously described the enrichment of plasma exosome metabolites in CRPC, PCa, and TFC cohorts, and found significant differences in pyrimidine metabolites. The PMGs is associated with the clinical prognosis of several cancers, but its biological role in PCa is still unclear.

Methods: This study extracted 98 reliable PMGs, and analyzed their somatic mutations, expression levels, and prognostic significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!