Apart from the biological and ethical problems, technical difficulties also hamper the improvement and widespread application of somatic cell nuclear transfer (NT). Recently introduced zona-free procedures may offer a solution for the latter problem. The most radical approach of these techniques is the so-called handmade cloning (HMC). It does not require micromanipulators because the manipulations required for both enucleation and nucleus transfer are performed by hand. The HMC technique includes manual bisection of zona-free oocytes, selection of cytoplasts by staining, and the simultaneous fusion of the somatic cell with two cytoplasts to produce a cloned embryo. HMC is a rapid and efficient technique that suits large-scale NT programs. It requires less expertise and time than traditional NT methods and the cost of equipment is significantly less. Production efficiency is high and embryo quality, in terms of pregnancy rates and live births, is not compromised. Although HMC has been developed particularly for bovine NT, the technique is applicable to other species. The method may become a useful tool for both experimental and commercial somatic cell cloning because it allows for standardization of procedures and provides the possibility of automation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-59745-154-3_12 | DOI Listing |
Nat Commun
December 2024
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.
View Article and Find Full Text PDFNat Commun
December 2024
Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation.
View Article and Find Full Text PDFAndrology
December 2024
Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
Ovarian organoids are essential in female reproductive medicine, enhancing our understanding of ovarian diseases and improving treatments, which benefits women's health. Constructing ovarian organoids involves two main processes: differentiating induced pluripotent stem cells (iPSCs) into germ and ovarian somatic cells to restore ovarian function and using extracellular matrix (ECM) to create a suitable ovarian microenvironment and scaffold. Although the technology is still in its early stages, future advancements will likely involve integrating high-throughput analysis, 3D-printed scaffolds, and efficient iPSC induction, driving progress in reproductive and regenerative medicine.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.
Background: Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!