Circadian rhythms are approximately 24-h oscillations in behavior and physiology, which are internally generated and function to anticipate the environmental changes associated with the solar day. A conserved transcriptional-translational autoregulatory loop generates molecular oscillations of 'clock genes' at the cellular level. In mammals, the circadian system is organized in a hierarchical manner, in which a master pacemaker in the suprachiasmatic nucleus (SCN) regulates downstream oscillators in peripheral tissues. Recent findings have revealed that the clock is cell-autonomous and self-sustained not only in a central pacemaker, the SCN, but also in peripheral tissues and in dissociated cultured cells. It is becoming evident that specific contribution of each clock component and interactions among the components vary in a tissue-specific manner. Here, we review the general mechanisms of the circadian clockwork, describe recent findings that elucidate tissue-specific expression patterns of the clock genes and address the importance of circadian regulation in peripheral tissues for an organism's overall well-being.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddl207 | DOI Listing |
J Med Case Rep
January 2025
Department of Oral and Maxillofacial Pathology, School of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Background: Undifferentiated pleomorphic sarcoma, previously called malignant fibrous histiocytoma, is a type of malignant mesenchymal tumor (sarcoma) of soft tissue and sometimes bone. It is uncommon in the oral cavity and very sporadic in the maxillary sinus. Microscopic diagnosis of this malignancy in the maxillary sinus can be very challenging, because there is a range of features that may overlap with other benign and malignant tumors.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes.
View Article and Find Full Text PDFJ Hepatol
January 2025
Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America. Electronic address:
Background & Aims: Lanifibranor is a pan-PPAR agonist that improves glucose/lipid metabolism and reverses steatohepatitis and fibrosis in adults with MASH. We tested its effect on insulin resistance at the level of different target tissues in relationship to change in intrahepatic triglyceride (IHTG) content.
Methods: This phase 2, single center, study randomized (1:1) 38 patients with T2D and MASLD to receive lanifibranor 800 mg or placebo for 24 weeks.
Am J Hum Genet
January 2025
Shenzhen Research Institute of Big Data, Shenzhen 518172, China. Electronic address:
Genome-wide association studies (GWASs) have identified numerous genetic variants associated with complex traits, yet the biological interpretation remains challenging, especially for variants in non-coding regions. Expression quantitative trait locus (eQTL) studies have linked these variations to gene expression, aiding in identifying genes involved in disease mechanisms. Traditional eQTL analyses using bulk RNA sequencing (bulk RNA-seq) provide tissue-level insights but suffer from signal loss and distortion due to unaddressed cellular heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!