A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. | LitMetric

Escherichia coli possesses multiple routes for iron uptake. Here we present EfeU (YcdN), a novel iron acquisition system of E. coli strain Nissle 1917. Laboratory strains of E. coli such as K12 lack a functional (efeU) ycdN gene caused by a frameshift mutation. EfeU, a member of the oxidase-dependent iron transporters (OFeT), is a homologue of the iron permease Ftr1p from yeast. The ycdN gene is part of the ycdNOB tricistronic operon which is expressed in response to iron deprivation in a Fur-dependent manner. Expression of efeU resulted in improved growth of an E. coli mutant lacking all known iron-uptake systems and mediated increased iron uptake into cells. Furthermore, the presence of other divalent metal cations did not impair growth of strains expressing efeU. The EfeU protein functioned as ferrous iron permease in proteoliposomes in vitro. Topology analysis indicated that EfeU is an integral cytoplasmic membrane protein exhibiting seven transmembrane helices. Two REXXE motifs within transmembrane helices of OFeT family members are implicated in iron translocation. Site-directed mutagenesis of each REGLE motif of EfeU diminished iron uptake in vivo and growth yield. In vitro the EfeU variant protein with an altered first REGLE motif was impaired in iron permeation, whereas activity of the EfeU variant with a mutation in the second motif was similar to the wild-type protein.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2006.05326.xDOI Listing

Publication Analysis

Top Keywords

efeu ycdn
12
iron uptake
12
efeu
11
iron
10
escherichia coli
8
ycdn gene
8
iron permease
8
transmembrane helices
8
regle motif
8
efeu variant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!