Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concentrations of brominated flame retardants (BFRs), including polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD), were investigated in an arctic marine food chain consisting of four invertebrate species: polar cod (Boreogadus saida), ringed seals (Pusa hispida), and polar bears (Ursus maritimus). The most abundant BFR, brominated diphenyl ether (BDE)-47, was found in detectable concentrations even in zooplankton, the lowest trophic level examined in this study. Most of the investigated BFRs biomagnified as function of tropic level in the food chain. A noticeable exception occurred at the highest trophic level, the polar bear, in which only BDE-153 was found to increase from its main prey, the ringed seal, indicating that polar bears appear to be able to metabolize and biodegrade most BFRs. In contrast, lower-brominated PBDEs, particularly BDE-47, showed clear signs of bioaccumulation in zooplankton, polar cod, and ringed seals. We suggest that this discrepancy in the fate of BFRs among the different species may be related to greater induction of oxidative detoxification activities in the polar bear. Absorption and debromination rates may be more important for bioaccumulation rates of BFRs in zooplankton, polar cod, and ringed seals. Lipid weight-based concentrations (LWCs) and whole body-based concentrations (WBCs) of BFRs were used to assess biomagnification factors (BMFs). Whole-body concentrations gave the most realistic BMFs, as BMFs derived from LWCs seem to be confounded by the large variability in lipid content of tissues from the investigated species. This study demonstrates that PBDEs and HBCD have reached measurable concentrations even in the lower trophic levels (invertebrates and fish) in the Arctic and biomagnifies in the polar bear food chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1897/05-591r.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!