Pheromone-dependent mate search is under strict circadian control in different moth species. But it remains unknown whether daytime-dependent changes in pheromone sensitivity already occur at the periphery in male moths. Because adapting pheromone stimuli cause rises of cyclic guanosine monophosphate (cGMP) in pheromone-sensitive trichoid sensilla of the night-active hawkmoth Manduca sexta, we wanted to determine whether cGMP decreases pheromone-sensitivity of olfactory receptor neurons in a daytime-dependent manner. Long-term tip recordings from trichoid sensilla were performed at the early day (ZT 1-4), when many moths are still active, and at the middle of the day (ZT 8-11), when moths are resting. A non-adapting pheromone-stimulation protocol combined with perfusion of the sensillum lymph with the membrane-permeable cGMP analogue 8bcGMP adapted the action potential response but not the sensillar potential. Perfusion with 8bcGMP decreased the initial action potential frequency, decreased the numbers of action potentials elicited in the first 100 ms of the pheromone response and attenuated the reduction of action potential amplitude. Furthermore, the decrease in 8bcGMP-dependent action potential frequency was stronger in recordings made at ZT 8-11 than at ZT 1-4. In the control recordings during the course of the day the pheromone responses became increasingly tonic and less phasic. At ZT 8-11 only, this daytime-dependent effect was further enhanced by 8bcGMP application. Thus we hypothesize that during the moths' resting phase, elevated cGMP levels underlie a daytime-dependent decrease in pheromone sensitivity and a decline in the temporal resolution of pheromone pulses.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.02432DOI Listing

Publication Analysis

Top Keywords

action potential
20
cgmp analogue
8
potential response
8
hawkmoth manduca
8
manduca sexta
8
daytime-dependent manner
8
pheromone sensitivity
8
trichoid sensilla
8
potential frequency
8
action
6

Similar Publications

Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Background: The Patient Education Materials Assessment Tool (PEMAT) is a reliable and validated instrument for assessing the understandability and actionability of patient education materials. It has been applied across diverse cultural and linguistic contexts, enabling cross-field and cross-national material quality comparisons. Accumulated evidence from studies using the PEMAT over the past decade underscores its potential impact on patient and public action.

View Article and Find Full Text PDF

Giant cell tumors (GCTs) are benign but locally aggressive bone neoplasms that primarily affect skeletally mature individuals. They are characterized by a tendency for recurrence and being associated with significant morbidity. Traditional treatment has focused on surgical resection; however, the role of medical therapies, such as Denosumab, a bone anti-resorptive drug, which has been Food and Drug Administration (FDA)-approved for unresectable GCTs since 2013, recently has gained prominence.

View Article and Find Full Text PDF

Objectives: Urinary tract infections (UTIs) can negatively impact quality of life, especially when recurring. Patients often seek medical advice to relieve painful symptoms. UTIs are also the second most common reason antibiotics are prescribed in English primary care.

View Article and Find Full Text PDF

A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease.

Sci Adv

January 2025

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.

Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!