Secreted parasitism proteins encoded by parasitism genes expressed in esophageal gland cells mediate infection and parasitism of plants by root-knot nematodes (RKN). Parasitism gene 16D10 encodes a conserved RKN secretory peptide that stimulates root growth and functions as a ligand for a putative plant transcription factor. We used in vitro and in vivo RNA interference approaches to silence this parasitism gene in RKN and validate that the parasitism gene has an essential function in RKN parasitism of plants. Ingestion of 16D10 dsRNA in vitro silenced the target parasitism gene in RKN and resulted in reduced nematode infectivity. In vivo expression of 16D10 dsRNA in Arabidopsis resulted in resistance effective against the four major RKN species. Because no known natural resistance gene has this wide effective range of RKN resistance, bioengineering crops expressing dsRNA that silence target RKN parasitism genes to disrupt the parasitic process represents a viable and flexible means of developing novel durable RKN-resistant crops and could provide crops with unprecedented broad resistance to RKN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1570184 | PMC |
http://dx.doi.org/10.1073/pnas.0604698103 | DOI Listing |
Nat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFEnviron Int
January 2025
Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom. Electronic address:
The dissemination of antimicrobial resistant (AMR) bacteria by flies in hospitals is concerning as nosocomial AMR infections pose a significant threat to public health. This threat is compounded in low- and middle-income countries (LMICs) by several factors, including limited resources for sufficient infection prevention and control (IPC) practices and high numbers of flies in tropical climates. In this pilot study, 1,396 flies were collected between August and September 2022 from eight tertiary care hospitals in six cities (Abuja, Enugu, Kaduna, Kano, Lagos and Sokoto) in Nigeria.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
January 2025
National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria.
Increased incidence of Clostridioides difficile infections were documented in Bulgarian hospitals during COVID-19. WGS was performed on 39 isolates from seven hospitals during 2015-2022. Antimicrobial resistance and toxin genes were inferred from genomes.
View Article and Find Full Text PDFJ Med Entomol
January 2025
Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland.
Myiasis is a parasitic infestation of soft vertebrate tissues by larval stages of Diptera. We briefly described the lesion-causing genus Cordylobia Grünberg (Diptera: Calliphoridae). Three Polish travelers to Uganda, Gambia, and Senegal returned with furuncular myiasis.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!