Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The analysis of length-biased data has been mostly limited to the interarrival interval of a renewal process covering a specific time point. Motivated by a surveillance problem, we consider a more general situation where this time point is random and related to a specific event, for example, status change or onset of a disease. We also consider the problem when additional information is available on whether the event intervals (interarrival intervals covering the random event) end within or after a random time period (which we call a window period) following the random event. Under the assumptions that the occurrence rate of the random event is low and the renewal process is independent of the random event, we provide formulae for the estimation of the distribution of interarrival times based on the observed event intervals. Procedures for testing the required assumptions are also furnished. We apply our results to human immunodeficiency virus (HIV) test data from public test sites in Seattle, Washington, where the random event is HIV infection and the window period is from the onset of HIV infection to the time at which a less sensitive HIV test becomes positive. Results show that the estimator of the intertest interval length distribution from event intervals ending within the window period is less biased than the estimator from all event intervals; the latter estimator is affected by right truncation. Finally, we discuss possible applications to estimating HIV incidence and analyzing length-biased samples with right or left truncated data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1541-0420.2006.00536.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!