Hydration and dewetting near fluorinated superhydrophobic plates.

J Am Chem Soc

Department of Chemistry, Columbia University, New York, New York 10027, USA.

Published: September 2006

The water dynamics near nanoscale fluorinated (CF(3)(CF(2))(7)(CH(2))(2)SiH(3)) monolayers (plates) as well as possible dewetting transitions in-between two such plates have been studied with molecular dynamics simulations in this paper. A "weak water depletion" is found near the single fluorinated surface, with an average water density in the first solvation shells 6-8% lower than its hydrogenated counterpart. The fluorinated molecules are also found to be water impermeable, consistent with experimental findings. More surprisingly, a dewetting transition is found in the interplate region with a critical distance D(c) of 10 A (3-4 water diameters) for double plates with 8 x 8 molecules each (plate size approximately 4 nm x 4 nm). This transition, although occurring on a microscopic length scale, is reminiscent of a first-order phase transition from liquid to vapor. The unusual superhydrophobicity of fluorocarbons is found to be related to their larger size (or surface area) as compared to hydrocarbons, which "dilutes" their physical interactions with water. The water-plate interaction profile shows that the fluorinated carbons have a 10-12% weaker water-plate interaction than their hydrogenated counterparts in the nearest solvation shell, even though the fluorocarbons do have a stronger electrostatic interaction with water due to their larger partial charges. However, the van der Waals interactions dominate the water-plate interaction within the nearest shell, with up to 90% contributions to the total interaction energy, and fluorocarbons have a noticeably weaker (by 10-15%) van der Waals interaction with water in the nearest shell than do hydrocarbons. Both the slightly weaker water-plate interaction and larger surface area contribute to the stronger dewetting transition in the current fluorinated carbon plates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja057944eDOI Listing

Publication Analysis

Top Keywords

water-plate interaction
16
water
8
dewetting transition
8
surface area
8
weaker water-plate
8
interaction water
8
van der
8
der waals
8
nearest shell
8
interaction
7

Similar Publications

Freezing Transitions of Nanoconfined Coarse-Grained Water Show Subtle Dependence on Confining Environment.

J Phys Chem B

March 2016

Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.

The solid-to-liquid phase transition in water nanofilms confined between plates, with varying separations and water-plate interactions ranging from strongly hydrophobic to strongly hydrophilic, was simulated using a coarse-grained monatomic water model (mW) and the generalized replica exchange method (gREM). Extensive gREM simulations combined with the statistical temperature weighted histogram analysis method (ST-WHAM) provide a detailed description of the thermodynamic properties intrinsic to the phase transition, including the transition temperature, isobaric heat capacity, phase change enthalpy, entropy, and their dependence on the interplate distance and the plate-water interaction. The ice structure of water nanofilms was characterized at various conditions using the transverse density profile and the distribution of angles formed by hydrogen-bonded neighboring molecules.

View Article and Find Full Text PDF

In this study, the phantom imaging quality of 64-slice CT acquisition protocol was quantitatively evaluated using Taguchi. The phantom acrylic line group was designed and assembled with multiple layers of solid water plate in order to imitate the adult abdomen, and scanned with Philips brilliance CT in order to simulate a clinical examination. According to the Taguchi L8(2(7)) orthogonal array, four major factors of the acquisition protocol were optimized, including (A) CT slice thickness, (B) the image reconstruction filter type, (C) the spiral CT pitch, and (D) the matrix size.

View Article and Find Full Text PDF

We present results from all-atom molecular dynamics simulations of large-scale hydrophobic plates solvated in NaCl and NaI salt solutions. As observed in studies of ions at the air-water interface, the density of iodide near the water-plate interface is significantly enhanced relative to chloride and in the bulk. This allows for the partial hydration of iodide while chloride remains more fully hydrated.

View Article and Find Full Text PDF

Hydration and dewetting near fluorinated superhydrophobic plates.

J Am Chem Soc

September 2006

Department of Chemistry, Columbia University, New York, New York 10027, USA.

The water dynamics near nanoscale fluorinated (CF(3)(CF(2))(7)(CH(2))(2)SiH(3)) monolayers (plates) as well as possible dewetting transitions in-between two such plates have been studied with molecular dynamics simulations in this paper. A "weak water depletion" is found near the single fluorinated surface, with an average water density in the first solvation shells 6-8% lower than its hydrogenated counterpart. The fluorinated molecules are also found to be water impermeable, consistent with experimental findings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!