Caf1, a chaperone-usher protein from Yersinia pestis, is a major protective antigen in the development of subunit vaccines against plague. However, recombinant Caf1 forms polymers of indeterminate size. We report the conversion of Caf1 from a polymer to a monomer by circular permutation of the gene. Biophysical evaluation confirmed that the engineered Caf1 was a folded monomer. We compared the immunogenicity of the engineered monomer with polymeric Caf1 in antigen presentation assays to CD4 T-cell hybridomas in vitro, as well as in the induction of antibody responses and protection against subcutaneous challenge with Y. pestis in vivo. In C57BL/6 mice, for which the major H-2(b)-restricted immunodominant CD4 T-cell epitopes were intact in the engineered monomer, immunogenicity and protective efficacy were preserved, although antibody titers were decreased 10-fold. Disruption of an H-2(d)-restricted immunodominant CD4 T-cell epitope during circular permutation resulted in a compromised T-cell response, a low postvaccination antibody titer, and a lack of protection of BALB/c mice. The use of circular permutation in vaccine design has not been reported previously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698084PMC
http://dx.doi.org/10.1128/IAI.00437-06DOI Listing

Publication Analysis

Top Keywords

circular permutation
16
cd4 t-cell
12
yersinia pestis
8
engineered monomer
8
immunodominant cd4
8
caf1
5
immunogenicity yersinia
4
pestis vaccine
4
vaccine antigen
4
antigen monomerized
4

Similar Publications

Detection of circular permutations by Protein Language Models.

Comput Struct Biotechnol J

December 2024

School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250300, China.

Protein circular permutations are crucial for understanding protein evolution and functionality. Traditional detection methods face challenges: sequence-based approaches struggle with detecting distant homologs, while structure-based approaches are limited by the need for structure generation and often treat proteins as rigid bodies. Protein Language Model-based alignment tools have shown advantages in utilizing sequence information to overcome the challenges of detecting distant homologs without requiring structural input.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins.

View Article and Find Full Text PDF

Climate change and water scarcity bring significant challenges to agricultural systems in the Mediterranean region. Novel methods are required to rapidly monitor the water stress of the crop to avoid qualitative losses of agricultural products. This study aimed to predict the stem water potential of cotton ( L.

View Article and Find Full Text PDF

Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe trans-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron-exon method and allow for the incorporation of RNA modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!