Recently, using structure-inspired drug design, we demonstrated that aminoalkyl derivatives of beta-cyclodextrin inhibited anthrax lethal toxin action by blocking the transmembrane pore formed by the protective antigen (PA) subunit of the toxin. In the present study, we evaluate a series of new beta-cyclodextrin derivatives with the goal of identifying potent inhibitors of anthrax toxins. Newly synthesized hepta-6-thioaminoalkyl and hepta-6-thioguanidinoalkyl derivatives of beta-cyclodextrin with alkyl spacers of various lengths were tested for the ability to inhibit cytotoxicity of lethal toxin in cells as well as to block ion conductance through PA channels reconstituted in planar bilayer lipid membranes. Most of the tested derivatives were protective against anthrax lethal toxin action at low or submicromolar concentrations. They also blocked ion conductance through PA channels at concentrations as low as 0.1 nM. The activities of the derivatives in both cell protection and channel blocking were found to depend on the length and chemical nature of the substituent groups. One of the compounds was also shown to block the edema toxin activity. It is hoped that these results will help to identify a new class of drugs for anthrax treatment, i.e., drugs that block the pathway for toxin translocation into the cytosol, the PA channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635233PMC
http://dx.doi.org/10.1128/AAC.00693-06DOI Listing

Publication Analysis

Top Keywords

lethal toxin
12
inhibitors anthrax
8
anthrax toxins
8
derivatives beta-cyclodextrin
8
anthrax lethal
8
toxin action
8
ion conductance
8
conductance channels
8
toxin
6
anthrax
5

Similar Publications

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

Paeniclostridium sordellii is responsible for severe infections in horses, cattle, and sheep; however, conventional vaccines exhibit limitations in production and immunogenicity. This study assessed the immunogenicity of a recombinant bacterin composed of a chimera (rQTcsHL) that combines segments from the lethal (TcsL) and hemorrhagic (TcsH) toxins in mice and sheep. Both immunized animal groups exhibited elevated levels of IgG, with the mice demonstrating moderate protection (<50%) against lethal challenges, comparable to that of the conventional vaccine.

View Article and Find Full Text PDF

Understanding the Molecular Mechanisms of Pyrene in Governing the Critical Metabolic Circuits of .

Environ Sci Technol

January 2025

Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.

Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on , a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater.

View Article and Find Full Text PDF

Background: Perfluoroalkyl substances (PFAS) are persistent environmental contaminants previously used for industrial purposes as a non-stick coating and flame retardant. The stability of these molecules prevents their breakdown, which results in ground water contamination across the globe. Perfluoroalkyl substances molecules are known to bioaccumulate in various organisms.

View Article and Find Full Text PDF

Neutrophils are peripheral blood-circulating leukocytes that play a pivotal role in host defense against bacterial pathogens which upon activation, they release web-like chromatin structures called neutrophil extracellular traps (NETs). Here, we analyzed and compared the importance of myeloid differentiation factor 88 (MYD88), peptidyl arginine deiminase 4 (PAD4), and gasdermin D (GSDMD) for NET formation in vivo following sepsis and neutrophilia challenge. Injection of lipopolysaccharide (LPS)/E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!