Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling.

Mol Cell Biol

Department of Health and Human Services, Laboratory of Signal Transduction, National Institute of Environmental Health Services, National Institutes of Health, Building 101, Research Triangle Park, NC 27709, USA.

Published: December 2006

Glucocorticoids are used to treat various inflammatory disorders, but the mechanisms underlying these actions are incompletely understood. The zinc finger protein tristetraprolin (TTP) destabilizes several proinflammatory cytokine mRNAs by binding to AU-rich elements within their 3' untranslated regions, targeting them for degradation. Here we report that glucocorticoids induce the synthesis of TTP mRNA and protein in A549 lung epithelial cells and in rat tissues. Dexamethasone treatment leads to a sustained induction of TTP mRNA expression that is abrogated by RU486. Glucocorticoid induction of TTP mRNA is also blocked by actinomycin D but not by cycloheximide, suggesting a transcriptional mechanism which has been confirmed by transcription run-on experiments. The most widely characterized TTP-regulated gene is the AU-rich tumor necrosis factor alpha (TNF-alpha) gene. Dexamethasone represses TNF-alpha mRNA in A549 cells and decreases luciferase expression of a TNF-alpha 3' untranslated region reporter plasmid in an orientation-dependent manner. Small interfering RNAs to TTP significantly prevent this effect, and a cell line stably expressing a short-hairpin RNA to TTP conclusively establishes that TTP is critical for dexamethasone inhibition of TNF-alpha mRNA expression. These studies provide the molecular evidence for glucocorticoid regulation of human TTP and reflect a novel inductive anti-inflammatory signaling pathway for glucocorticoids that acts via posttranscriptional mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636823PMC
http://dx.doi.org/10.1128/MCB.00679-06DOI Listing

Publication Analysis

Top Keywords

ttp mrna
12
tumor necrosis
8
necrosis factor
8
factor alpha
8
ttp
8
induction ttp
8
mrna expression
8
tnf-alpha mrna
8
mrna
5
glucocorticoids
4

Similar Publications

Cytoplasmic mRNA decay controlling inflammatory gene expression is determined by pre-mRNA fate decision.

Mol Cell

January 2025

Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria. Electronic address:

The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly.

View Article and Find Full Text PDF

Consortium of 2029 and 7247 Strains Shows In Vitro Bactericidal Effect on and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction.

Antibiotics (Basel)

November 2024

Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK.

(CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of 2029 (LC2029), 7247 (LS7247), and a mannan-rich prebiotic (Actigen).

View Article and Find Full Text PDF

Target product profile for cell-based and gene-based therapies to achieve a cure for HIV.

Lancet HIV

January 2025

Africa Health Research Institute, Durban, South Africa; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; University College London, London, UK.

This target product profile (TPP) highlights the minimal and optimal characteristics for ex-vivo and in-vivo cell and gene therapy-based products aimed at achieving an HIV cure (ie, durable antiretroviral-free viral control). The need for an effective, safe, scalable, affordable, accessible, and acceptable cure for HIV infection remains a major global priority. The possibilities for cell and gene therapy-based products for an HIV cure are rapidly expanding.

View Article and Find Full Text PDF

Immunometabolism is critical in the regulation of immunity and inflammation; however, the mechanism of preventing aberrant activation-induced immunopathology remains largely unclear. Here, we report that glyoxalase II (GLO2) in the glycolysis branching pathway is specifically downregulated by NF-κB signaling during innate immune activation via tristetraprolin (TTP)-mediated mRNA decay. As a result, its substrate S-D-lactoylglutathione (SLG) accumulates in the cytosol and directly induces D-lactyllysine modification of proteins.

View Article and Find Full Text PDF

Background: TRK-inhibitors have demonstrated efficacy across several cancers with NTRK fusions. Their activity in cancers with NTRK overexpression remains unclear.

Methods: This trial enrolled patients with advanced cancers harboring NTRK fusions or extreme mRNA overexpression, defined as NTRK1/2/3 expression by RNA profiling >5 SDs for a given cancer type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!