XE7: a novel splicing factor that interacts with ASF/SF2 and ZNF265.

Nucleic Acids Res

Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, NSW 2006, Australia.

Published: November 2006

Pre-mRNA splicing is performed by the spliceosome. SR proteins in this macromolecular complex are essential for both constitutive and alternative splicing. By using the SR-related protein ZNF265 as bait in a yeast two-hybrid screen, we pulled out the uncharacterized human protein XE7, which is encoded by a pseudoautosomal gene. XE7 had been identified in a large-scale proteomic analysis of the human spliceosome. It consists of two different isoforms produced by alternative splicing. The arginine/serine (RS)-rich region in the larger of these suggests a role in mRNA processing. Herein we show for the first time that XE7 is an alternative splicing regulator. XE7 interacts with ZNF265, as well as with the essential SR protein ASF/SF2. The RS-rich region of XE7 dictates both interactions. We show that XE7 localizes in the nucleus of human cells, where it colocalizes with both ZNF265 and ASF/SF2, as well as with other SR proteins, in speckles. We also demonstrate that XE7 influences alternative splice site selection of pre-mRNAs from CD44, Tra2-beta1 and SRp20 minigenes. We have thus shown that the spliceosomal component XE7 resembles an SR-related splicing protein, and can influence alternative splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635291PMC
http://dx.doi.org/10.1093/nar/gkl660DOI Listing

Publication Analysis

Top Keywords

alternative splicing
16
xe7
9
rs-rich region
8
splicing
7
alternative
5
xe7 novel
4
novel splicing
4
splicing factor
4
factor interacts
4
interacts asf/sf2
4

Similar Publications

Alternative splicing is a post-transcriptional process resulting in multiple protein isoforms from a single gene. Abnormal splicing may lead to metabolic diseases, including type 2 diabetes mellitus (T2DM). To identify the splicing factor expression that predicts T2DM remission in coronary heart disease (CHD) patients, we identified newly diagnosed T2DM at baseline ( = 190) from the CORDIOPREV study.

View Article and Find Full Text PDF

Splicing to orchestrate cell fate.

Mol Ther Nucleic Acids

March 2025

Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.

Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.

View Article and Find Full Text PDF

Corrigendum to "Comparative study of transcriptomic alterations in sepsis-induced acute liver injury: Deciphering the role of alternative splicing in mouse models" [Int. Immunopharmacol. 146 (2025) 113878].

Int Immunopharmacol

January 2025

Department of Emergency, Kashi Prefecture Second People's Hospital, Kashi 844000, Xinjiang, China; Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China. Electronic address:

View Article and Find Full Text PDF

Upregulation of p52-ZER6 (ZNF398) increases reactive oxygen species by suppressing metallothionein-3 in neuronal cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea. Electronic address:

ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain.

View Article and Find Full Text PDF

One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!