A sustained Ca2+ entry is the primary signal for T lymphocyte activation after antigen recognition. This Ca2+ entry mainly occurs through store-operated Ca2+ channels responsible for a highly selective Ca2+ current known as I(CRAC). Ca2+ ions act as negative feedback regulators of I(CRAC), promoting its inactivation. Mitochondria, which act as intracellular Ca2+ buffers, have been proposed to control all stages of CRAC current and, hence, intracellular Ca2+ signaling in several types of non-excitable cells. Using the whole-cell configuration of the patch clamp technique, which allows control of the intracellular environment, we report here that respiring mitochondria located close to CRAC channels can regulate slow Ca2+-dependent inactivation of I(CRAC) by increasing the Ca2+-buffering capacity beneath the plasma membrane, mainly through the release of ATP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M603518200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!