Mammalian CYPHER (Oracle, KIA0613), a member of the PDZ-LIM family of proteins (Enigma/LMP-1, ENH, ZASP/Cypher, RIL, ALP, and CLP-36), has been associated with cardiac and muscular myopathies. Targeted deletion of Cypher in mice is neonatal lethal possibly caused by myopathies. To further investigate the role of cypher in development, we have cloned the zebrafish orthologue. We present here the gene, domain structure, and expression pattern of zebrafish cypher during development. Cypher was not present as a maternal mRNA and was absent during early development. Cypher mRNA was first detected at the 3-somite stage in adaxial somites, and as somites matured, cypher expression gradually enveloped the whole somite. Later, cypher expression was also found in the heart, in head and jaw musculature, and in the brain. We further identified 13 alternative spliced forms of cypher from zebrafish heart and skeletal muscle tissue, among them a very short form containing the PDZ domain but lacking the ZM (ZASP-like) motif and the LIM domains. Targeted gene knock-down experiments using cypher antisense morpholinos led to severe defects, including truncation of the embryo, deformation of somites, dilatation of the pericardium, and thinning of the ventricular wall. The phenotype could be rescued by a cypher form, which contains the PDZ domain and the ZM motif, but lacks all three LIM domains. These findings indicate that a PDZ domain protein is important for normal somite formation and in normal heart development. Treatment of zebrafish embryos with cyclopamine, which disrupts hedgehog signaling, abolished cypher expression in 9 somite and 15-somite stage embryos. Taken together, our data suggest that cypher may play a role downstream of sonic hedgehog, in a late stage of somite development, when slow muscle fibers differentiate and migrate from the adaxial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2006.07.032DOI Listing

Publication Analysis

Top Keywords

cypher
13
cypher expression
12
pdz domain
12
zebrafish cypher
8
somite formation
8
heart development
8
cypher development
8
development cypher
8
form pdz
8
lim domains
8

Similar Publications

The International Telecommunication Union (ITU) predicts a substantial and swift increase in global mobile data traffic. The predictions suggest that this growth will vary from 390 EB (exabytes) to 5,016 EB (exabytes) from 2024 to 2030, accordingly. This work presents a new maximum capacity model (MCM) to improve the dynamic resource allocation, robust encryption, and Quality of Service (QoS) in 5G networks which helps to meet the growing need for high-bandwidth applications such as Voice over Internet Protocol (VoIP) and video streaming.

View Article and Find Full Text PDF

Toxicity of crude oil-derived polar unresolved complex mixtures to Pacific herring embryos: Insights beyond polycyclic aromatic hydrocarbons.

Sci Total Environ

December 2024

Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education & Research Facility, University of New Orleans, New Orleans, Louisiana 70148, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA. Electronic address:

Crude oil toxicity to early life stage fish is commonly attributed to polycyclic aromatic hydrocarbons (PAHs). However, it remains unclear how the polar unresolved complex mixture (UCM), which constitutes the bulk of the water-soluble fraction of crude oil, contributes to crude oil toxicity. Additionally, the role of photomodification-induced toxicity in relation to the polar UCM is not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • - TPD can effectively eliminate disease-causing proteins by engaging a cell’s protein degradation system, overcoming limitations of traditional inhibitors that typically target only one mechanism.
  • - The CYpHER technology utilizes a pH-dependent release system and a rapidly cycling transferrin receptor to enhance the delivery of therapeutic agents to surface and extracellular targets, increasing treatment potency while potentially reducing side effects.
  • - Successful application of CYpHER was demonstrated both in laboratory settings (in vitro) with specific cancer markers (EGFR and PD-L1) and in animal studies (in vivo) using a model of lung cancer driven by EGFR.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!