The nucleus of the solitary tract (NTS) receives primary afferents involved in cardiovascular regulation. We investigated the role of NK(1)-receptor bearing neurons in the NTS on cardiovascular reflexes in awake rats fitted with chronic venous and arterial cannulae. These neurons were lesioned selectively with saporin conjugated with substance P (SP-SAP, 2 microM, bilateral injections of 20 nL in the subpostremal NTS, or 200 nL in both the subpostremal and the commissural NTS). Before, and 7 and 14 days after injection of SP-SAP, we measured changes in blood pressure and heart rate induced by i.v. injection of phenylephrine and nitroprusside (baroreceptor reflex), cyanide (arterial chemoreceptor reflex), and phenylbiguanide (Bezold-Jarisch reflex). The smaller injections with SP-SAP completely abolished NK1 receptor staining in the subpostremal NTS. The larger injections abolished NK1 receptor immunoreactivity in an area that extended from the commissural NTS to the rostral end of the subpostremal NTS. The lesions seemed to affect only a limited number of neurons, since neutral red stained sections did not show any obvious reduction in cell number. The smaller lesions reduced the gain of baroreflex bradycardia and the hypotension induced by phenylbiguanide. The larger lesions completely abolished the response to phenylbiguanide, blocked the baroreflex bradycardia induced by phenylephrine, severely blunted the baroreflex tachycardia, and blocked the bradycardia and reduced the hypertension induced by cyanide. Thus, these responses depend critically on NK(1)-receptor bearing neurons in the NTS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2006.08.059 | DOI Listing |
ACS Nano
December 2024
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
More than the sparse infiltration in glioblastoma, cytotoxic T lymphocytes (CTLs) also function inefficiently and overexpress the inhibitory markers, especially the identified NK cell receptor (NK1.1). However, most studies solely focus on how to augment tumor-infiltrating CTLs and overlook their killing maintenance.
View Article and Find Full Text PDFNeuropeptides
October 2024
Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
Several data indicate that Substance P (SP) neurokinin type 1 receptor (NK1R) is at the center of the interaction between cancer cells and peripheral sensory neurons. Selecting the appropriate cancer cell line and its susceptibility to being modulated by NK1 antagonists are critical to studying this complex interaction. In the current study, we have focused on this selection by comparing several aspects of the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) with a modified murine cell line (E0771), both expressing luciferase.
View Article and Find Full Text PDFInt J Clin Oncol
November 2024
Department of Early Clinical Development, Kyoto University Graduate School of Medicine, 54 Kawahara‑Cho, Sakyo-ku, Shogoin, Kyoto, 606‑8507, Japan.
J Biol Chem
October 2024
Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Substance P and neurokinin A are closely related neuropeptides belonging to the tachykinin family. Their receptors are neurokinin one receptor (NK1R) and neurokinin two receptor (NK2R), G protein-coupled receptors that transmit G and G-mediated downstream signaling. We investigate the importance of sequence differences at the bottom of the receptor orthosteric site for activity and selectivity, focusing on residues that closely interact with the C-terminal methionine of the peptide ligands.
View Article and Find Full Text PDFMol Neurobiol
October 2024
Faculty of Health Sciences, Queen's University, Kingston, ON, Canada.
Chronic post-thoracotomy pain (CPTP) is a major clinical problem that affects up to 35-55% of patients undergoing thoracic incisions. Evidence suggests that multiple cellular signaling pathways and neuro-inflammatory mediators may play an essential role in the pathogenesis of CPTP. In this comprehensive review, we present the current evidence on the cellular signaling pathways and inflammatory changes associated with the initiation and maintenance of CPTP, focusing on the potential application of these findings in the clinical setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!