The mechanism of atmospheric pressure (AP) laser ionization of water and water/glycerol liquid samples at a 3-microm wavelength is studied experimentally. For the ion desorption, an in-house built Yb : YAG-pumped optical parametric oscillator (OPO) infrared (IR) laser has been coupled with AP MALDI ion source interfaced to an ion trap mass spectrometer (MS). It has been shown that water is primarily responsible for ion generation in water/glycerol samples, while glycerol increases the solution viscosity and decreases the water evaporation rate and sample losses. In contrast to AP UV-MALDI, the electric field in the case of AP IR-MALDI does not assist in ion production. It was found that the absence of the electrical field provides the optimum ionization condition both for water and water/glycerol liquid samples at the 3-microm laser irradiation. A two-stage ion formation mechanism, which includes the initial emission of microdroplets and release of molecular ions at the second stage, can explain the experimentally observed ion signal dependencies upon the voltage applied between MS inlet and the MALDI sample plate. Postionization using additional corona discharge APCI increases the observed signal by approximately 50%, which indicates that some portion of the analyte is desorbed in the form of neutral molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.1104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!