Class IIa histone deacetylases (HDACs) are found both in the cytoplasm and in the nucleus where they repress genes involved in several major developmental programs. In response to specific signals, the repressive activity of class IIa HDACs is neutralized through their phosphorylation on multiple N-terminal serine residues and 14-3-3-mediated nuclear exclusion. Here, we demonstrate that class IIa HDACs are subjected to signal-independent nuclear export that relies on their constitutive phosphorylation. We identify EMK and C-TAK1, two members of the microtubule affinity-regulating kinase (MARK)/Par-1 family, as regulators of this process. We further show that EMK and C-TAK1 phosphorylate class IIa HDACs on one of their multiple 14-3-3 binding sites and alter their subcellular localization and repressive function. Using HDAC7 as a paradigm, we extend these findings by demonstrating that signal-independent phosphorylation of the most N-terminal serine residue by the MARK/Par-1 kinases, i.e., Ser155, is a prerequisite for the phosphorylation of the nearby 14-3-3 site, Ser181. We propose that this multisite hierarchical phosphorylation by a variety of kinases allows for sophisticated regulation of class IIa HDACs function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592903PMC
http://dx.doi.org/10.1128/MCB.00231-06DOI Listing

Publication Analysis

Top Keywords

class iia
24
iia hdacs
16
emk c-tak1
12
activity class
8
iia histone
8
histone deacetylases
8
n-terminal serine
8
class
6
iia
6
hdacs
5

Similar Publications

Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models.

View Article and Find Full Text PDF

Class IIa histone deacetylase (HDAC) inhibitor TMP269 suppresses lumpy skin disease virus replication by regulating host lysophosphatidic acid metabolism.

J Virol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China.

Lumpy skin disease virus (LSDV) infection poses a significant threat to global cattle farming. Currently, effective therapeutic agents are lacking. TMP269, a small molecule inhibitor of class IIa histone deacetylase inhibitor, plays a vital role in cancer therapy.

View Article and Find Full Text PDF

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Upregulated astrocyte HDAC7 induces Alzheimer-like tau pathologies via deacetylating transcription factor-EB and inhibiting lysosome biogenesis.

Mol Neurodegener

January 2025

College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.

Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!