Cell division in Escherichia coli requires the concerted action of at least 10 essential proteins. One of these proteins, FtsQ, is physically associated with multiple essential division proteins, including FtsK, FtsL, FtsB, FtsW, and FtsI. In this work we performed a genetic analysis of the ftsQ gene. Our studies identified C-terminal residues essential for FtsQ's interaction with two downstream proteins, FtsL and FtsB. Here we also describe a novel screen for cell division mutants based on a wrinkled-colony morphology, which yielded several new point mutations in ftsQ. Two of these mutations affect localization of FtsQ to midcell and together define a targeting role for FtsQ's alpha domain. Further characterization of one localization-defective mutant protein [FtsQ(V92D)] revealed an unexpected role in localization for the first 49 amino acids of FtsQ. Finally, we found a suppressor of FtsQ(V92D) that was due to a point mutation in domain 1C of FtsA, a domain previously implicated in the recruitment of divisome proteins. However, despite reports of a potential interaction between FtsA and FtsQ, suppression by FtsA(I143L) is not mediated via direct contact with FtsQ. Rather, this mutation acts as a general suppressor of division defects, which include deletions of the normally essential genes zipA and ftsK and mutations in FtsQ that affect both localization and recruitment. Together, these results reveal increasingly complex connections within the bacterial divisome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797389 | PMC |
http://dx.doi.org/10.1128/JB.00991-06 | DOI Listing |
iScience
January 2025
School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
Cell-cell interactions and communication represent the fundamental cornerstone of cells' collaborative efforts in executing diverse biological processes. A profound understanding of how cells interface through various mediators is pivotal across a spectrum of biological systems. Recent strides in microfluidic technologies have significantly bolstered the precision and prowess in capturing and manipulating cells with exceptional spatial and temporal resolution.
View Article and Find Full Text PDFiScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Lymphomatoid papulosis (LyP) is currently categorized as a primary lymphoproliferative disorder that follows a chronic, recurrent clinical course. The diagnosis of LyP is mainly based on clinical presentation and histopathological correlation. Six subtypes of LyP have been described and recognized, each with different histological features and sometimes distinct clinical presentations.
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States.
While durable antibody responses from long-lived plasma cell (LLPC) populations are important for protection against pathogens, LLPC may be harmful if they produce antibodies against self-proteins or self-nuclear antigens as occurs in autoimmune diseases such as systemic lupus erythematosus (SLE). Thus, the elimination of autoreactive LLPC may improve the treatment of antibody-driven autoimmune diseases. However, LLPC remain a challenging therapeutic target.
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Urology, Department of Surgery, Endeavor Health (formerly NorthShore University HealthSystem), Evanston, IL, United States.
Introduction: Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!