Dynamic changes in Robo2 and Slit1 expression in adult rat dorsal root ganglion and sciatic nerve after peripheral and central axonal injury.

Neurosci Res

Department of Anatomy & Neurobiology, Xiangya School of Medicine, Central South University, No. 172, Tongzipo Road, Changsha, Hunan 410013, China.

Published: November 2006

Robos are transmembrane receptors that mediate Slit signaling to repel growth cone outgrowth and neural migration in the developing central nervous system. Their distribution and function in the peripheral nervous system remains unclear. In the present study, we examined expression of Slit1 and Robo2 in adult rat dorsal root ganglion (DRG), spinal cord and sciatic nerve after peripheral nerve injury (axotomy). In control rats, Slit1 and Robo2 mRNA and protein were expressed at basic levels in the L5 and L6 DRGs. Sciatic transection resulted in a significant up-regulation of both Robo2 and Slit1 mRNA and protein (p<0.05 versus control). The peak of Slit1 and Robo2 expression occurred at days 7 and 14, respectively, and returned to control levels at days 28 and 21 post-axotomy, respectively. By contrast, injury to the central axons of the DRG by dorsal rhizotomy did not up-regulate Slit1 and Robo2 expression. Robo2 staining was stronger in small diameter neurons than in large diameter neurons in control DRG. Interestingly, post-axotomy, Robo2 immunostaining increased in the large diameter neurons and the number of Robo2 positive large diameter neurons increased significantly relative to controls. Non-neuronal cells surrounding the primary sensory neurons, including the satellite cells, were Slit1-positive, and Slit1 protein was expressed in the myelin sheath and non-neural cells in both intact and degenerating sciatic nerve axons. Sciatic nerve transection also led to an accumulation of Slit1 protein in peripheral region of the traumatic neuroma. In conclusion, we report an altered expression and redistribution of Robo2 and Slit1 in the DRG and sciatic nerve trunk after peripheral axotomy. Our results indicate that Slit1 and Robo2 likely play an important role in regeneration after peripheral nerve injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2006.07.014DOI Listing

Publication Analysis

Top Keywords

robo2 slit1
8
adult rat
8
rat dorsal
8
dorsal root
8
root ganglion
8
sciatic nerve
8
nerve peripheral
8
nervous system
8
slit1 robo2
8
mrna protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!