Impairment of the ocular circulation induced by diabetes mellitus has not been fully defined, but is thought to be related to hemodynamic changes in the ocular circulation. The purpose of the present study is to investigate the functional and morphological changes occurring in the ciliary artery wall of rabbits with alloxan-induced diabetes mellitus. A single intravenous bolus injection of alloxan (100 mg/kg) was given to each of 26 10-week-old rabbits and 16 sham-injected control rabbits. Twenty weeks later, control rabbits and diabetic rabbits were sacrificed, and their ciliary arteries were mounted in a myograph system. The responses of these arteries to high K+ solution (K-Krebs solution), phenylephrine and carbachol were investigated using isometric tension recording. L-NAME (NG-nitro-l-arginine methyl ester; 100 microM) and indomethacin (1 microM) were also used to test the mechanism causing the carbachol induced relaxation. The arteries were also examined morphologically. The maximum tensions induced by K-Krebs solution in this tissue were not significantly different: 17.2+/-0.8 mN (n=16) in the control rabbits and 17.6+/-0.8 mN (n=23) in the diabetic rabbits (P=0.36). Phenylephrine caused dose-dependent contraction with EC50 values of 1.3+/-0.4 microM (n=6) in the control and 5.1+/-2.3 microM (n=6) in the diabetic rabbits, but there was no significant difference between the two (P=0.36). Carbachol induced dose-dependent relaxations in segments precontracted with K-Krebs solution. These relaxations were significantly reduced in the diabetic rabbits. The maximum relaxation induced by carbachol was 77.0+/-2.4% (10 microM) and 66.4+/-2.5% (100 microM) in the control and diabetic rabbits, respectively. These values were significantly different (P=0.0076). The IC(50) value for carbachol was 396.3+/-58.4 nM (n=16) in the control, and 443.6+/-141.1 nM (n=23) in the diabetic rabbit (P=0.87). Application of a 100 microM nitric oxide synthase inhibitor, L-NAME, significantly inhibited the amplitude of relaxations evoked by carbachol (P=0.0066). However, these relaxations were not inhibited by pretreatment with 1 microM indomethacin (P=0.60). Histologically, the frequency of invaginations was less in the diabetic arterioles with a flattening of the lamina in the diabetic rabbits than in the controls. The cytoplasm of endothelial cells contained large vacuoles, indicating weak adhesion to the lamina. Some endothelial cells even showed vacuolar degeneration due to breakdown of the cell membranes. However, the smooth muscle cells were well preserved in the diabetic rabbit. These results suggest that the mechanism of impairment of ocular circulation induced by diabetes mellitus is mainly the reduction of NO synthase due to endothelial cell dysfunction. Furthermore, the characteristics of rabbits with alloxan-induced diabetes mellitus probably make them a useful model for investigating ocular complications induced by diabetic mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2006.06.001DOI Listing

Publication Analysis

Top Keywords

diabetic rabbits
24
diabetes mellitus
16
diabetic rabbit
12
ocular circulation
12
rabbits
12
control rabbits
12
k-krebs solution
12
100 microm
12
diabetic
11
ciliary artery
8

Similar Publications

Diabetes significantly increases the risk of serious health issues, including prolonged skin inflammation and delayed wound healing, owing to inferior glucose control and suppression of the immune system. Although traditional hydrogen (H2) therapy is slightly effective, its ability to tailor the release of H2 on the skin is limited. Accordingly, this study proposed a novel strategy for electrocatalytic H2 release under neutral conditions to promote wound healing in diabetic mice and rabbit.

View Article and Find Full Text PDF

In wound study and dressing development, a lack of a suitable animal model that can recapitulate the complex pathophysiology of human chronic wounds has been a major hurdle. Chronic wounds are defined as wounds that heal with a significant delay, usually over a period >2-3 months, but no current animal wound model has such a longischemia. After a longexploration, our group has developed an animal wound model with ischemia and nerve damage lasting for at least 6 months.

View Article and Find Full Text PDF

A Bifunctional Peptide with Penetration Ability for Treating Retinal Angiogenesis via Eye Drops.

Mol Pharm

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.

Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.

View Article and Find Full Text PDF

Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration.

Pharmaceutics

November 2024

Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China.

Background: Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms.

View Article and Find Full Text PDF

Early stages of diabetic retinopathy are currently considered an unmet medical need due to the lack of effective treatments beyond proper monitoring and control of glycemia and blood pressure. Sitagliptin eye drops have emerged as a new therapeutic approach against early stages of the disease, as they can prevent its main hallmarks, including both neurodegeneration and microvascular impairment. Interestingly, all of these effects occur without any glycemic systemic improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!