Mytilus galloprovincialis foot protein type-5 (Mgfp-5) is one of the mussel adhesive proteins that participate in adhesion with the substratum. We previously reported the production of recombinant Mgfp-5 in Escherichia coli and showed that the recombinant protein had superior adhesion abilities versus those of Cell-Tak, a commercially available mussel adhesive protein mixture. In the present work, we investigated the feasibility of using recombinant Mgfp-5 as a cell adhesion agent. Purified and tyrosinase-modified recombinant Mgfp-5 was used to adhere living anchorage-independent cells such as insect Drosophila S2 cells and human MOLT-4 cells onto glass slides. Our results revealed that these cell lines efficiently attached to recombinant Mgfp-5-coated glass surfaces, and that surface-immobilized S2 cells were viable and able to undergo cell division for up to 1 week. Cytochemical studies with 4',6-diamidino-2-phenylindole (DAPI) staining of nuclei and immunofluorescence for secreted foreign human erythropoietin (hEPO) from recombinant S2 cells and quantitative comparative analyses of S2 cell binding ability with Cell-Tak and poly-L-lysine, the main cell adhesion agent, were performed to demonstrate successful usage of recombinant Mgfp-5 for cell biological applications. Collectively, these results indicate that recombinant Mgfp-5 may be a useful new cell adhesion biomaterial for anchorage-independent cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2006.08.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!