White matter growth as a mechanism of cognitive development in children.

Neuroimage

Brain and Behavior Program, Research Institute, Hospital for Sick Children, 555 University Ave., Toronto, ON, Toronto, Ontario, Canada M5G 1X8.

Published: November 2006

We examined the functional role of white matter growth in cognitive development. Specifically, we used hierarchical regression analyses to test the unique contributions of age versus white matter integrity in accounting for the development of information processing speed. Diffusion tensor imaging was acquired for 17 children and adolescents (age range 6-17 years), with apparent diffusion coefficient (ADC) and fractional anisotropy (FA) calculated for 10 anatomically defined fiber pathways and 12 regions of hemispheric white matter. Measures of speeded visual-spatial searching, rapid picture naming, reaction time in a sustained attention task, and intelligence were administered. Age-related increases were evident across tasks, as well as for white matter integrity in hemispheric white matter. ADC was related to few measures. FA within multiple hemispheric compartments predicted rapid picture naming and standard error of reaction time in sustained attention, though it did not contribute significantly to the models after controlling for age. Independent of intelligence, visual-spatial searching was related to FA in a number of hemispheric regions. A novel finding was that only right frontal-parietal regions contributed uniquely beyond the effect of age in accounting for performance: age did not contribute to visual-spatial searching when FA within these regions was first included in the models. Considering we found that both FA in right frontal-parietal regions and speed of visual-spatial searching increased with age, our findings are consistent with the growth of regional white matter organization as playing an important role in increased speed of visual searching with age.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2006.07.024DOI Listing

Publication Analysis

Top Keywords

white matter
28
visual-spatial searching
16
matter growth
8
cognitive development
8
matter integrity
8
hemispheric white
8
rapid picture
8
picture naming
8
reaction time
8
time sustained
8

Similar Publications

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Clinical Insights and Radiological Features on Multiple Sclerosis Comorbid with Migraine.

J Clin Med

January 2025

Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy.

Multiple sclerosis (MS) and migraine are neurological diseases, affecting young women. Migraine is the most prevalent type of headache in people with MS (pwMS). The aim of this review is to describe the clinical, radiological, and therapeutic features of MS and migraine comorbidity.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is frequently associated with long-term post-stroke cognitive impairment (PSCI) and dementia. While the mechanisms behind PSCI are not fully understood, the brain and cognitive reserve concepts are topics of ongoing research exploring the ability of individuals to maintain intact cognitive performance despite ischemic injuries. Brain reserve refers to the brain's structural capacity to compensate for damage, with markers like hippocampal atrophy and white matter lesions indicating reduced reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!