Sphingosylphosphorylcholine (SPC) is the major component of high-density lipoproteins (HDL) in blood plasma. The bioactive lipid acts mainly via G protein coupled receptors (GPCRs). Similar to ligands of other GPCRs, SPC has multiple biological roles including the regulation of proliferation, migration, angiogenesis, wound healing and heart rate. Lysophospholipids and their receptors have also been implicated in cell differentiation. A potential role of SPC in stem cell or tumour cell differentiation has been elusive so far. Here we examined the effect of SPC on the differentiation of mouse embryonic stem (ES) cells and of human NB4 promyelocytic leukemia cells, a well established tumour differentiation model. Our data show that mouse embryonic stem cells and NB4 cells express the relevant GPCRs for SPC. We demonstrate both at the level of morphology and of gene expression that SPC induces neuronal and cardiac differentiation of mouse ES cells. Furthermore, SPC induces differentiation of NB4 cells by a mechanism which is critically dependent on the activity of the MEK-ERK cascade. Thus, the bioactive lipid SPC is a novel differentiation inducing agent both for mouse ES cells, but also of certain human tumour cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2006.07.015 | DOI Listing |
Acta Pharm Sin B
December 2024
Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.
Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Strasbourg, UMR 7213 CNRS, 74, Route du Rhin, 67401, Illkirch-Strasbourg, FRANCE.
Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey.
Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA.
Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!