Kinetics of struvite to newberyite transformation in the precipitation system MgCl2-NH4H2PO4NaOH-H2O.

Water Res

Laboratory for Precipitation Processes, Division of Materials Chemistry, Ruder Bosković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia.

Published: October 2006

The influence of the initial reactant concentrations on the composition of the solid phases formed in the precipitation system MgCl(2)-NH(4)H(2)PO(4)-NaOH-H(2)O was investigated. The precipitation diagram constructed shows the approximate concentration regions within which struvite, newberyite, and their mixtures exist at 25 degrees C and an aging time of 60 min. It was found that immediately after mixing the reactant solutions, struvite (MgNH(4)PO(4).6H(2)O) precipitated in nearly the whole concentration area, while newberyite (MgHPO(4).3H(2)O) appeared mostly within the region of the excess of magnesium concentration. It was also found that after aging time of 60 min the precipitation domain of struvite alone is much broader than that of newberyite or the domain of their coexistence, and shows that struvite is more abundant in the systems in which the initial concentration of ammonium phosphate is higher than that of magnesium. The kinetics of struvite to newberyite transformation (conversion) was systematically studied under the conditions of different initial reactant concentrations and different initial pH in the systems in which a mixture of both phases precipitated spontaneously. The struvite to newberyite conversion period was found to be strongly related to the ratio of initial supersaturations, S(N)/S(S), rather than to the any particular physical quantity that can describe and predict the behavior of the precipitation system. Experimental data suggest a solution-mediated process as a most possible transformation mechanism. Along with a continuous monitoring of the changes in the liquid phase, the content of struvite in the solid phase was estimated by means of a Fourier transform infrared (FT-IR) method, developed for this particular precipitation system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2006.07.026DOI Listing

Publication Analysis

Top Keywords

struvite newberyite
16
precipitation system
16
kinetics struvite
8
newberyite transformation
8
initial reactant
8
reactant concentrations
8
aging time
8
time min
8
struvite
7
newberyite
6

Similar Publications

Magnesium phosphate cement (MPC), a cementitious material that hardens through an acid-base reaction, is theoretically expected to exhibit strong acid resistance. However, studies on the durability of MPC in acidic environments remain limited. This study aims to systematically evaluate the acid resistance of MPC in common inorganic acid solutions across various pH levels.

View Article and Find Full Text PDF

Magnesium phosphate cements (MPCs), also known as chemically bonded ceramics, represent a class of inorganic cements that have garnered considerable interest in recent years for their exceptional properties and diverse applications in the construction and engineering sectors. However, the development of these cements is relatively recent (they emerged at the beginning of the 20th century), so there are still certain aspects relating to their durability that need to be evaluated. The present work analyses the chemical durability of magnesium potassium phosphate cements (MKPCs) during 1 year of immersion in three leaching media: seawater, a NaSO solution (4% by mass) and deionized water.

View Article and Find Full Text PDF

Efficient reclamation of phosphorus from wetland biomass waste via liquid-recirculated hydrothermal carbonization and precipitation.

Water Res

November 2024

School of Environmental Science and Engineering Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China.

Hydrothermal carbonization (HTC) for the recovery of phosphorus (P) from biomass wastes has attracted considerable attention, while migration of P to the liquid phase greatly weakened P recovery efficiency and elevated the environmental risk. Therefore, a systematic scheme was proposed in this work to accomplish the complete reclamation of P from wetland plant (Ceratophyllum demersum) through coupling liquid-recirculated HTC mediated by HO or HSO with precipitation, and the migration and speciation of P during this process was determined by P K-edge X-ray absorption near edge structure, P nuclear magnetic resonance, and the modified sequential extraction. The P concentration in the liquid phase increased with the recirculation of HTC process water, and reached up to 550.

View Article and Find Full Text PDF

The breeding of livestock raises substantial environmental concerns, especially the efficient management of nutrients and pollution. This research is designed to assess the potency of char and modified char in diluting nutrient concentrations in livestock wastewater. The characteristics of graphene oxide, struvite, and calcium-modified char were inspected, defining their efficacy in both batch and bed-column investigations of nutrient sorption.

View Article and Find Full Text PDF

Phosphorus recovery via struvite crystallization in batch and fluidized-bed reactors: Roles of microplastics and dissolved organic matter.

J Hazard Mater

September 2024

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China. Electronic address:

Struvite crystallization, a promising technology for nutrient recovery from wastewater, is facing considerable challenges due to the presence of emerging contaminants such as microplastics (MPs) ubiquitously found in wastewater. Here, we investigate the roles of MPs and humic acid (HA) in struvite crystallization in batch and fluidized-bed reactors (FBRs) using synthetic and real wastewater with a Mg:N:P molar ratio of 1:3:(1-1.3) at an initial pH of 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!