Histone deacetylase inhibitors have a potent role in the strategy for the treatment of leukemias. BML-210 (N-(2-Aminophenyl)-N' phenyloctanol diamine) is the novel histone deacetylase inhibitor, and its mechanism of action has not been characterized. In this study, we examined the in vitro effects of BML-210 on the human leukemia cell lines (NB4, HL-60, THP-1, and K562). We found that BML-210 inhibits the growth of all cell lines and promotes apoptosis in a dose- and time-dependent manner. BML-210 alone induces HL-60 and K562 cell differentiation (up to 30%) to granulocytes and erythrocytes, respectively, and in combination with differentiation agents - all-trans retinoic acid and hemin, markedly potentates it. Those treatments cause G1 arrest and histone H4 acetylation, affects transcription factor NF-kappaB and Sp1 binding activity to their consensus sequences, the p21 or the FasL promoters, and influences expression of Sp1, NF-kappaB, p21 and FasL. These findings suggest that BML-210 could be a promising antileukemic agent to induce apoptosis and to modulate differentiation through the modulation of histone acetylation and gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2006.08.010 | DOI Listing |
Mol Neurodegener
January 2025
Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.
View Article and Find Full Text PDFLife Sci
January 2025
Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:
The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!