alpha-Synuclein protects SH-SY5Y cells from dopamine toxicity.

Biochem Biophys Res Commun

Department of Structural and Functional Biology, and Centre of Neuroscience, University of Insubria, Via Alberto da Giussano 12, 21052 Busto Arsizio, VA, Italy.

Published: November 2006

Dopaminergic human neuroblastoma SH-SY5Y cells were stably transformed to increase expression of alpha-synuclein, a Parkinson's disease-related protein. Transformed cells were more resistant to oxidative insults, showing a cytoprotective role of alpha-synuclein. The expression of redox chaperonins (DJ-1, HSP70, and 14-3-3) was evaluated by Western blotting. Expression of alpha-synuclein reduced HSP70 levels even in the presence of dopamine, with a twofold increase of DJ-1 in the absence of oxidants. DJ-1 is significantly reduced by dopamine, and even more by dopamine and Cu(II). Increased alpha-synuclein expression did not affect 14-3-3, although dopamine increased its level by 60% in wild-type cells. alpha-Synuclein not only upregulated DJ-1, but also shifted all DJ-1 forms to a single spot at pI=5.7 not observed in wild-type cells. Dopamine gradually restored the distribution of DJ-1 forms to a situation similar to wild-type cells, with the form at pI=6.1 progressively enriched under oxidative conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.08.163DOI Listing

Publication Analysis

Top Keywords

wild-type cells
12
sh-sy5y cells
8
cells dopamine
8
expression alpha-synuclein
8
alpha-synuclein expression
8
dj-1 forms
8
alpha-synuclein
6
cells
6
dopamine
6
dj-1
6

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown.

View Article and Find Full Text PDF

Early neutrophil activation and NETs release in the pristane-induced lupus mice model.

PLoS One

January 2025

Laboratório de Imunologia Celular (LIM-17), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.

Background: NETosis is recognized as an important source of autoantigens. Therefore, we hypothesized whether the pristane-induced lupus mice model shows early activation of neutrophils, the presence of low-density granulocytes (LDGs), and neutrophil extracellular traps (NETs) release, which could contribute to the development of a lupus phenotype.

Methods: Twelve female wild-type Balb/c mice were intraperitoneally injected with pristane (n = 6; pristane group) or saline (n = 6; control group).

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.

Background: Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. A pathological hallmark of the disease is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!