The aim of the present study was to establish the origin of the motor, autonomic and sensory innervation of the L1-L2 segment of the porcine longissimus dorsi muscle (LDM), in order to provide morphological basis for further studies focusing on this neural pathway under experimental conditions, e.g. phototerapy and/or lateral electrical surface stimulation. To reach the goal of the study, multiple injections of the fluorescent neuronal tracer Fast Blue (FB) were made into the LDM region between the spinal processes of the vertebrae L1 and L2. The spinal cord (Th13-S1 segments) as well as the sensory and autonomic ganglia of interest, i.e., dorsal root (DRG) and sympathetic chain ganglia from corresponding spinal cord levels were collected three weeks later. FB-positive (FB+) motoneurons were observed exclusively within the nucleus ventromedialis at L1 and L2 spinal cord level, forming the most ventro-medially arranged cell column within this nucleus. Primary sensory and sympathetic chain neurons were found in appropriate ipsilateral ganglia at Th15-L3 levels. The vast majority of retrogradely traced neurons (virtually all motoneurons, approximately 76% of sensory and 99.4% of sympathetic chain ganglia neurons) was found at the L1 and L2 levels. The morphometric evaluation of FB-labeled DRG neurons showed that the majority of them (approximately 66%) belonged to the class of small-diameter perikarya (10-30 microm in diameter), whereas those of medium size (30-80 microm in diameter) and of large diameter (more than 80 microm) constituted 22.6% and 11.5% of all DRG neurons, respectively. The results of the present study demonstrated that the nerve terminals supplying porcine LDM originated from different levels of the spinal cord, dorsal root and sympathetic chain ganglia. Thus, the study has revealed sources and morphological characteristic of somatic, autonomic and spinal afferent neurons supplying porcine LDM, simultaneously pointing out the characteristic features of their distribution pattern.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!