In addition to the transmembrane protein, GP(1,2), the Ebola virus glycoprotein gene encodes the soluble glycoproteins sGP and Delta-peptide. Two more soluble proteins, GP(1) and GP(1,2DeltaTM), are generated from GP(1,2) as a result of disulfide-bond instability and proteolytic cleavage, respectively, and are shed from the surface of infected cells. The sGP glycoprotein is secreted as a disulfide-linked homodimer, but there have been conflicting reports on whether it is arranged in a parallel or antiparallel orientation. Off-line HPLC-MALDI-TOF MS (MS/MS) was used to identify the arrangement of all disulfide bonds and simultaneously determine site-specific information regarding N-glycosylation. Our data prove that sGP is a parallel homodimer that contains C53-C53' and C306-C306' disulfide bonds, and although there are six predicted N-linked carbohydrate sites, only five are consistently glycosylated. The disulfide bond arrangement was confirmed by using cysteine to glycine mutations at amino acid positions 53 and 306. The mutants had a reduced ability to rescue the barrier function of TNF-alpha-treated endothelial cells--a function previously reported for sGP. This indicates that these disulfide bonds are critical for the proposed anti-inflammatory function of sGP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.200600223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!