Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Automated virtual microscopy of specimens from gastrointestinal biopsies is based on cytometric parameters of digitized histological sections. To our knowledge, cytometric parameters of gastritis and of adenocarcinoma have yet to be fully characterized. Our objective was to classify gastritis and adenocarcinoma based on cytometric parameters. We hypothesized that automated virtual microscopy using this novel classification can reliably diagnose gastritis and adenocarcinoma.
Methods: Routinely processed hematoxylin-and-eosin-stained histological sections from specimens that showed normal mucosa (14 cases), gastritis (35 cases), and adenocarcinoma (30 cases) diagnosed by conventional optical microscopy were scanned and digitized at high resolution. Thirty-eight cytometric parameters based on density and morphometry were applied to glands and superficial epithelium. Twelve cytometric parameters based on cytologic detail were applied to individual cells.
Results: Statistically significant differences in cytometric parameters for normal mucosa, gastritis, and adenocarcinoma were found. The most discriminatory parameter was the ratio of the total number of cells to the number of interstitial cells. These differences correctly classified adenocarcinoma at 100% accuracy and overall correctness was 86%.
Conclusions: We describe a novel method of analyzing gastric mucosal histology based on cytometric parameters. Automated virtual microscopy can be used to classify gastric mucosa as normal, gastritis, or adenocarcinoma with reasonable accuracy. Further research is necessary to determine whether automated virtual microscopy can subclassify gastric mucosal histology in greater detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.b.20119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!