A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlmr777sit79fcpd9ndkfhcqsmok19b15): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Cell biology. A metabolic push to proliferate. | LitMetric

Cell biology. A metabolic push to proliferate.

Science

Department of Nutritional Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ 08901, USA.

Published: September 2006

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1133253DOI Listing

Publication Analysis

Top Keywords

cell biology
4
biology metabolic
4
metabolic push
4
push proliferate
4
cell
1
metabolic
1
push
1
proliferate
1

Similar Publications

Orchestrated desaturation reprogramming from stearoyl-CoA desaturase to fatty acid desaturase 2 in cancer epithelial-mesenchymal transition and metastasis.

Cancer Commun (Lond)

December 2024

Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts, USA.

Background: Adaptative desaturation in fatty acid (FA) is an emerging hallmark of cancer metabolic plasticity. Desaturases such as stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) have been implicated in multiple cancers, and their dominant and compensatory effects have recently been highlighted. However, how tumors initiate and sustain their self-sufficient FA desaturation to maintain phenotypic transition remains elusive.

View Article and Find Full Text PDF

Background: The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem.

Objective: Here, we mine large-scale MM proteogenomic data to identify druggable targets and forecast treatment efficacy and resistance.

View Article and Find Full Text PDF

Identification of Brain Cell Type-Specific Therapeutic Targets for Glioma From Genetics.

CNS Neurosci Ther

December 2024

The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Previous research has demonstrated correlations between the complex types and functions of brain cells and the etiology of glioma. However, the causal relationship between gene expression regulation in specific brain cell types and glioma risk, along with its therapeutic implications, remains underexplored.

Methods: Utilizing brain cell type-specific cis-expression quantitative trait loci (cis-eQTLs) and glioma genome-wide association study (GWAS) datasets in conjunction with Mendelian randomization (MR) and colocalization analyses, we conducted a systematic investigation to determine whether an association exists between the gene expression of specific brain cell types and the susceptibility to glioma, including its subtypes.

View Article and Find Full Text PDF

Clinicopathological significance of c-MET and HER2 altered expression in bladder cancer.

J Egypt Natl Canc Inst

December 2024

Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Background: Tumor recurrence or metastasis after surgery is a significant factor influencing bladder cancer (BC) prognosis. Novel molecular biomarkers are necessary to determine each patient's specific outcome because current biomarkers have limited power for predicting prognosis. The proto-oncogene MET encodes c-MET, a tyrosine kinase receptor.

View Article and Find Full Text PDF

Background: The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!