Mutations in genes important for the preservation of genome stability can increase the frequency of gene amplification, a process relevant to tumor development. To investigate whether telomerase, the enzyme deputed to telomere maintenance, also plays a role in gene amplification, we studied the amplification of the carbamyl-P-synthetase, aspartate transcarbamilase, dihydro-orotase (CAD) gene in immortalized embryonic fibroblasts derived from telomerase knockout mice (mTERC(-/-)) of the first and of the sixth generation. As expected, in 9 out of 10 N-(phosphonacetyl)-L-aspartate (PALA) resistant clones derived from wild-type cells, CAD was amplified; in contrast, in none of the 30 PALA resistant clones isolated from the three mTERC(-/-) cell lines we could detect CAD amplification, indicating that, in the absence of telomerase activity, gene amplification is inhibited. The causal relationship between mTERC deficiency and lack of gene amplification was demonstrated by the restoration of CAD gene amplification in two of the three deficient cell lines transfected with mTERC. The lack of amplification in mTERC deficient cells could be related to a defect in the stabilization of the ends of the amplified chromosomes in the absence of telomerase, to a more general effect of telomerase in the regulation of gene expression, including genes involved in amplification, or to a possible interaction of the telomerase RNA with proteins involved in gene amplification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/bgl158 | DOI Listing |
Nucleic Acids Res
January 2025
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore.
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
The gut microbiome plays an important role in the carcinogenesis of luminal gastrointestinal malignancies and response to antineoplastic therapy. Preclinical studies have suggested a role of intratumoral gammaproteobacteria in mediating response to gemcitabine-based chemotherapy in pancreatic ductal adenocarcinoma (PDAC). To our knowledge, this is the first study to evaluate the impact of the PDAC microbiome on chemotherapy response using samples from human pancreatic tumor resections.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Wheat Research Institute, Shanxi Agricultural University, Linfen 041000, China.
The gene family is a highly conserved transcription factor that plays a crucial role in regulating plant growth, development, and responses to various stresses. Despite extensive studies in multiple plants, there has been a dearth of focused and systematic analysis on NF-YA genes in wheat grains. In this study, we carried out a comprehensive bioinformatics analysis of the gene family in wheat, using the latest genomic data from the Chinese Spring.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Genetically modified (GM) herbicide-tolerant soybean 'Zhonghuang 6106', which introduces a glyphosate-resistant gene, ensures soybean yield while allowing farmers to reduce the use of other herbicides, thereby reducing weed management costs. To protect consumer rights and facilitate government supervision, we have established a simple and rapid on-site nucleic acid detection method for GM soybean 'Zhonghuang 6106'. This method leverages the isothermal amplification characteristics of RPA technology and the high specificity of CRISPR-Cas12a to achieve high sensitivity and accuracy in detecting GM soybean components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!